An Unsupervised Segmentation Method for Retinal Vessel Using Combined Filters

W. S. Oliveira, Ing Ren Tsang, George D. C. Cavalcanti
{"title":"An Unsupervised Segmentation Method for Retinal Vessel Using Combined Filters","authors":"W. S. Oliveira, Ing Ren Tsang, George D. C. Cavalcanti","doi":"10.1109/ICTAI.2012.106","DOIUrl":null,"url":null,"abstract":"Image segmentation of retinal blood vessels is an important procedure for the prediction and diagnosis of cardiovascular related diseases, such as hypertension and diabetes, which are known to affect the retinal blood vessels appearance. This work develops an unsupervised segmentation procedure for the segmentation of retinal vessels images using a combined matched filter, Frangi filter and Gabor Wavelet Filter. After the vessel enhancement, two segmentation methods are tested. The first method uses an approach based on deformable models and the second uses fuzzy C-means for the image segmentation. The procedure is evaluated using two public image databases, Drive and Stare. The results are compared to other state-of-the-art methods described in the literature.","PeriodicalId":155588,"journal":{"name":"2012 IEEE 24th International Conference on Tools with Artificial Intelligence","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 24th International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2012.106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Image segmentation of retinal blood vessels is an important procedure for the prediction and diagnosis of cardiovascular related diseases, such as hypertension and diabetes, which are known to affect the retinal blood vessels appearance. This work develops an unsupervised segmentation procedure for the segmentation of retinal vessels images using a combined matched filter, Frangi filter and Gabor Wavelet Filter. After the vessel enhancement, two segmentation methods are tested. The first method uses an approach based on deformable models and the second uses fuzzy C-means for the image segmentation. The procedure is evaluated using two public image databases, Drive and Stare. The results are compared to other state-of-the-art methods described in the literature.
一种基于组合滤波器的视网膜血管无监督分割方法
视网膜血管图像分割是预测和诊断心血管相关疾病(如高血压、糖尿病)的重要步骤,这些疾病会影响视网膜血管的外观。本工作开发了一种无监督分割程序,用于使用组合匹配滤波器、Frangi滤波器和Gabor小波滤波器对视网膜血管图像进行分割。血管增强后,测试了两种分割方法。第一种方法使用基于可变形模型的方法,第二种方法使用模糊c均值进行图像分割。该程序使用两个公共图像数据库进行评估,驱动器和凝视。结果与文献中描述的其他最先进的方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信