Vlad Slavici, R. Varier, G. Cooperman, R. Harrison
{"title":"Adapting Irregular Computations to Large CPU-GPU Clusters in the MADNESS Framework","authors":"Vlad Slavici, R. Varier, G. Cooperman, R. Harrison","doi":"10.1109/CLUSTER.2012.42","DOIUrl":null,"url":null,"abstract":"Graphics Processing Units (GPUs) are becoming the workhorse of scalable computations. MADNESS is a scientific framework used especially for computational chemistry. Most MADNESS applications use operators that involve many small tensor computations, resulting in a less regular organization of computations on GPUs. A single GPU kernel may have to multiply by hundreds of small square matrices (with fixed dimension ranging from 10 to 28). We demonstrate a scalable CPU-GPU implementation of the MADNESS framework over a 500-node partition on the Titan supercomputer. For this hybrid CPU-GPU implementation, we observe up to a 2.3-times speedup compared to an equivalent CPU-only implementation with 16 cores per node. For smaller matrices, we demonstrate a speedup of 2.2-times by using a custom CUDA kernel rather than a cuBLAS-based kernel.","PeriodicalId":143579,"journal":{"name":"2012 IEEE International Conference on Cluster Computing","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLUSTER.2012.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Graphics Processing Units (GPUs) are becoming the workhorse of scalable computations. MADNESS is a scientific framework used especially for computational chemistry. Most MADNESS applications use operators that involve many small tensor computations, resulting in a less regular organization of computations on GPUs. A single GPU kernel may have to multiply by hundreds of small square matrices (with fixed dimension ranging from 10 to 28). We demonstrate a scalable CPU-GPU implementation of the MADNESS framework over a 500-node partition on the Titan supercomputer. For this hybrid CPU-GPU implementation, we observe up to a 2.3-times speedup compared to an equivalent CPU-only implementation with 16 cores per node. For smaller matrices, we demonstrate a speedup of 2.2-times by using a custom CUDA kernel rather than a cuBLAS-based kernel.