Upper and Lower Bounds for a Finite-Type Ruin Probability in a Nonhomogeneous Risk Process

A. Răducan, Raluca Vernic, Gheorghiță Zbăganu
{"title":"Upper and Lower Bounds for a Finite-Type Ruin Probability in a Nonhomogeneous Risk Process","authors":"A. Răducan, Raluca Vernic, Gheorghiță Zbăganu","doi":"10.2139/ssrn.2870737","DOIUrl":null,"url":null,"abstract":"Based on many numerical examples, Raducan et al. (2015b) stated a conjecture that relates the order in which some nonhomogeneous claims arrive to the magnitude of the corresponding ruin probability. In that conjecture, the usual stochastic order has been considered for the claims. However, in this paper, we prove the conjecture for a different stochastic order, namely the likelihood ratio order. In spite the fact that being stronger, the likelihood order implies the usual stochastic one, for some distributions the two orderings are equivalent, hence our initial conjecture proves to be true in several cases.","PeriodicalId":365755,"journal":{"name":"ERN: Other Econometrics: Mathematical Methods & Programming (Topic)","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Mathematical Methods & Programming (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2870737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Based on many numerical examples, Raducan et al. (2015b) stated a conjecture that relates the order in which some nonhomogeneous claims arrive to the magnitude of the corresponding ruin probability. In that conjecture, the usual stochastic order has been considered for the claims. However, in this paper, we prove the conjecture for a different stochastic order, namely the likelihood ratio order. In spite the fact that being stronger, the likelihood order implies the usual stochastic one, for some distributions the two orderings are equivalent, hence our initial conjecture proves to be true in several cases.
非齐次风险过程有限型破产概率的上界和下界
Raducan et al. (2015b)基于许多数值例子提出了一个猜想,该猜想将一些非齐次索赔到达的顺序与相应破产概率的大小联系起来。在这个猜想中,通常的随机顺序已经被考虑到了。然而,在本文中,我们证明了一种不同的随机阶,即似然比阶的猜想。尽管事实是更强,但似然序意味着通常的随机序,对于某些分布,这两种顺序是等效的,因此我们的初始猜想在某些情况下被证明是正确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信