{"title":"Mitigating Cross-Technology Interference in Heterogeneous Wireless Networks based on Deep Learning","authors":"Weidong Zheng, Junmei Yao, Kaishun Wu","doi":"10.1109/ICPADS51040.2020.00040","DOIUrl":null,"url":null,"abstract":"With the prosperity of Internet of Things, a large number of heterogeneous wireless devices share the same unlicensed spectrum, leading to severe cross-technology interference (CTI). Especially, the transmission power asymmetry of heterogeneous devices will further deteriorate this problem, making the low-power devices prohibited from data transmission and starved. This paper proposes an enhanced CCA (E-CCA) mechanism to mitigate CTI, so as to improve the performance and fairness among heterogeneous networks. E-CCA contains a signal identification design based on deep learning to identify the signal type within a tolerable time duration, it also contains a CCA adaptive mechanism based on the signal type to avoid CTI. As a result, the ZigBee devices could compete for the channel with WiFi devices more fairly, and the network performance can be improved accordingly. We set up a testbed based on TelosB, a commercial ZigBee platform, and USRP N210, which can be used as the WiFi platform. With the collected signals through USRP N210, over 99.9% signal identification accuracy can be achieved even when the signal duration is tens of microseconds. Simulation results based on NS-3 shows that E-CCA can increase the ZigBee performance dramatically with little throughput degradation for WiFi.","PeriodicalId":196548,"journal":{"name":"2020 IEEE 26th International Conference on Parallel and Distributed Systems (ICPADS)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 26th International Conference on Parallel and Distributed Systems (ICPADS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPADS51040.2020.00040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
With the prosperity of Internet of Things, a large number of heterogeneous wireless devices share the same unlicensed spectrum, leading to severe cross-technology interference (CTI). Especially, the transmission power asymmetry of heterogeneous devices will further deteriorate this problem, making the low-power devices prohibited from data transmission and starved. This paper proposes an enhanced CCA (E-CCA) mechanism to mitigate CTI, so as to improve the performance and fairness among heterogeneous networks. E-CCA contains a signal identification design based on deep learning to identify the signal type within a tolerable time duration, it also contains a CCA adaptive mechanism based on the signal type to avoid CTI. As a result, the ZigBee devices could compete for the channel with WiFi devices more fairly, and the network performance can be improved accordingly. We set up a testbed based on TelosB, a commercial ZigBee platform, and USRP N210, which can be used as the WiFi platform. With the collected signals through USRP N210, over 99.9% signal identification accuracy can be achieved even when the signal duration is tens of microseconds. Simulation results based on NS-3 shows that E-CCA can increase the ZigBee performance dramatically with little throughput degradation for WiFi.