Online Optimization with Feedback Delay and Nonlinear Switching Cost

Weici Pan, Guanya Shi, Yiheng Lin, A. Wierman
{"title":"Online Optimization with Feedback Delay and Nonlinear Switching Cost","authors":"Weici Pan, Guanya Shi, Yiheng Lin, A. Wierman","doi":"10.1145/3489048.3522657","DOIUrl":null,"url":null,"abstract":"We study a variant of online optimization in which the learner receives k-round delayed feedback about hitting cost and there is a multi-step nonlinear switching cost, i.e., costs depend on multiple previous actions in a nonlinear manner. Our main result shows that a novel Iterative Regularized Online Balanced Descent (iROBD) algorithm has a constant, dimension-free competitive ratio that is O(L2k), where L is the Lipschitz constant of the nonlinear switching cost. Additionally, we provide lower bounds that illustrate the Lipschitz condition is required and the dependencies on k and L are tight. Finally, via reductions, we show that this setting is closely related to online control problems with delay, nonlinear dynamics, and adversarial disturbances, where iROBD directly offers constant-competitive online policies. This extended abstract is an abridged version of [2].","PeriodicalId":264598,"journal":{"name":"Abstract Proceedings of the 2022 ACM SIGMETRICS/IFIP PERFORMANCE Joint International Conference on Measurement and Modeling of Computer Systems","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abstract Proceedings of the 2022 ACM SIGMETRICS/IFIP PERFORMANCE Joint International Conference on Measurement and Modeling of Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3489048.3522657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study a variant of online optimization in which the learner receives k-round delayed feedback about hitting cost and there is a multi-step nonlinear switching cost, i.e., costs depend on multiple previous actions in a nonlinear manner. Our main result shows that a novel Iterative Regularized Online Balanced Descent (iROBD) algorithm has a constant, dimension-free competitive ratio that is O(L2k), where L is the Lipschitz constant of the nonlinear switching cost. Additionally, we provide lower bounds that illustrate the Lipschitz condition is required and the dependencies on k and L are tight. Finally, via reductions, we show that this setting is closely related to online control problems with delay, nonlinear dynamics, and adversarial disturbances, where iROBD directly offers constant-competitive online policies. This extended abstract is an abridged version of [2].
具有反馈延迟和非线性切换代价的在线优化
我们研究了一种在线优化的变体,其中学习者接受k轮延迟反馈,并且存在多步非线性切换代价,即代价以非线性方式依赖于多个先前的动作。我们的主要结果表明,一种新的迭代正则化在线平衡下降(iROBD)算法具有恒定的无维竞争比O(L2k),其中L为非线性切换代价的Lipschitz常数。此外,我们提供了下界,说明Lipschitz条件是必需的,并且对k和L的依赖关系是紧密的。最后,通过约简,我们表明该设置与具有延迟、非线性动力学和对抗性干扰的在线控制问题密切相关,其中iROBD直接提供持续竞争的在线策略。此扩展摘要是[2]的删节版。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信