Deep Multi-task Learning with Label Correlation Constraint for Video Concept Detection

Fotini Markatopoulou, V. Mezaris, I. Patras
{"title":"Deep Multi-task Learning with Label Correlation Constraint for Video Concept Detection","authors":"Fotini Markatopoulou, V. Mezaris, I. Patras","doi":"10.1145/2964284.2967271","DOIUrl":null,"url":null,"abstract":"In this work we propose a method that integrates multi-task learning (MTL) and deep learning. Our method appends a MTL-like loss to a deep convolutional neural network, in order to learn the relations between tasks together at the same time, and also incorporates the label correlations between pairs of tasks. We apply the proposed method on a transfer learning scenario, where our objective is to fine-tune the parameters of a network that has been originally trained on a large-scale image dataset for concept detection, so that it be applied on a target video dataset and a corresponding new set of target concepts. We evaluate the proposed method for the video concept detection problem on the TRECVID 2013 Semantic Indexing dataset. Our results show that the proposed algorithm leads to better concept-based video annotation than existing state-of-the-art methods.","PeriodicalId":140670,"journal":{"name":"Proceedings of the 24th ACM international conference on Multimedia","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2964284.2967271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

In this work we propose a method that integrates multi-task learning (MTL) and deep learning. Our method appends a MTL-like loss to a deep convolutional neural network, in order to learn the relations between tasks together at the same time, and also incorporates the label correlations between pairs of tasks. We apply the proposed method on a transfer learning scenario, where our objective is to fine-tune the parameters of a network that has been originally trained on a large-scale image dataset for concept detection, so that it be applied on a target video dataset and a corresponding new set of target concepts. We evaluate the proposed method for the video concept detection problem on the TRECVID 2013 Semantic Indexing dataset. Our results show that the proposed algorithm leads to better concept-based video annotation than existing state-of-the-art methods.
基于标签相关约束的深度多任务学习视频概念检测
在这项工作中,我们提出了一种集成多任务学习(MTL)和深度学习的方法。我们的方法在深度卷积神经网络中添加了一个类似mtl的损失,以便同时学习任务之间的关系,并且还结合了任务对之间的标签相关性。我们将提出的方法应用于迁移学习场景,其中我们的目标是微调网络的参数,该网络最初是在用于概念检测的大规模图像数据集上训练的,以便将其应用于目标视频数据集和相应的新目标概念集。我们在TRECVID 2013语义索引数据集上对提出的视频概念检测方法进行了评估。我们的研究结果表明,与现有的最先进的方法相比,所提出的算法可以产生更好的基于概念的视频注释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信