Peipei Zhou, Hyunseok Park, Zhenman Fang, J. Cong, A. DeHon
{"title":"Energy Efficiency of Full Pipelining: A Case Study for Matrix Multiplication","authors":"Peipei Zhou, Hyunseok Park, Zhenman Fang, J. Cong, A. DeHon","doi":"10.1109/FCCM.2016.50","DOIUrl":null,"url":null,"abstract":"Customized pipeline designs that minimize the pipeline initiation interval (II) maximize the throughput of FPGA accelerators designed with high-level synthesis (HLS). What is the impact of minimizing II on energy efficiency? Using a matrix-multiply accelerator, we show that matrix multiplies with II>1 can sometimes reduce dynamic energy below II=1 due to interconnect savings, but II=1 always achieves energy close to the minimum. We also identify sources of inefficient mapping in the commercial tool flow.","PeriodicalId":113498,"journal":{"name":"2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2016.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Customized pipeline designs that minimize the pipeline initiation interval (II) maximize the throughput of FPGA accelerators designed with high-level synthesis (HLS). What is the impact of minimizing II on energy efficiency? Using a matrix-multiply accelerator, we show that matrix multiplies with II>1 can sometimes reduce dynamic energy below II=1 due to interconnect savings, but II=1 always achieves energy close to the minimum. We also identify sources of inefficient mapping in the commercial tool flow.