An adaptive linear neural network for identification of oscillatory damped signals

Z. Nouri-Sedeh, M. Mojiri, M. Zekri
{"title":"An adaptive linear neural network for identification of oscillatory damped signals","authors":"Z. Nouri-Sedeh, M. Mojiri, M. Zekri","doi":"10.1109/IRANIANCEE.2013.6599686","DOIUrl":null,"url":null,"abstract":"This paper presents an algorithm based on adaptive linear neural network for online estimation of damping factor and frequency of a complex exponentially damped sinusoidal signal. The unknown parameters of signal put in the single weight of a neural network. Normalized least mean square algorithm in complex form is applied to train this single weight. A variable step size is proposed to enhance the accuracy and convergence speed of the proposed method. Convergence analysis of the proposed method is presented. Simulations results confirm the analytical derivations and desirable performance of the proposed method.","PeriodicalId":383315,"journal":{"name":"2013 21st Iranian Conference on Electrical Engineering (ICEE)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 21st Iranian Conference on Electrical Engineering (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRANIANCEE.2013.6599686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents an algorithm based on adaptive linear neural network for online estimation of damping factor and frequency of a complex exponentially damped sinusoidal signal. The unknown parameters of signal put in the single weight of a neural network. Normalized least mean square algorithm in complex form is applied to train this single weight. A variable step size is proposed to enhance the accuracy and convergence speed of the proposed method. Convergence analysis of the proposed method is presented. Simulations results confirm the analytical derivations and desirable performance of the proposed method.
一种用于振动阻尼信号辨识的自适应线性神经网络
提出了一种基于自适应线性神经网络的复指数阻尼正弦信号的阻尼因子和频率在线估计算法。将信号的未知参数放在神经网络的单权重中。采用复形式的归一化最小均方算法对该单权重进行训练。为了提高方法的精度和收敛速度,提出了可变步长。给出了该方法的收敛性分析。仿真结果验证了该方法的解析推导和良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信