Indic Visual Question Answering

A. Chandrasekar, Amey Shimpi, D. Naik
{"title":"Indic Visual Question Answering","authors":"A. Chandrasekar, Amey Shimpi, D. Naik","doi":"10.1109/SPCOM55316.2022.9840835","DOIUrl":null,"url":null,"abstract":"Visual Question Answering (VQA) is a problem at the intersection of Computer Vision (CV) and Natural Language Processing (NLP) which involves using natural language to respond to questions based on the context of images. The majority of existing methods focus on monolingual models, particularly those that only support English. This paper proposes a novel dataset alongside monolingual and multilingual models using the baseline and attention-based architectures with support for three Indic languages: Hindi, Kannada, and Tamil. We compare the performance of traditional (CNN + LSTM) approaches with current attention-based methods using the VQA v2 dataset. The proposed work achieves 51.618% accuracy for Hindi, 57.177% for Kannada, and 56.061% for the Tamil model.","PeriodicalId":246982,"journal":{"name":"2022 IEEE International Conference on Signal Processing and Communications (SPCOM)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Signal Processing and Communications (SPCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPCOM55316.2022.9840835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Visual Question Answering (VQA) is a problem at the intersection of Computer Vision (CV) and Natural Language Processing (NLP) which involves using natural language to respond to questions based on the context of images. The majority of existing methods focus on monolingual models, particularly those that only support English. This paper proposes a novel dataset alongside monolingual and multilingual models using the baseline and attention-based architectures with support for three Indic languages: Hindi, Kannada, and Tamil. We compare the performance of traditional (CNN + LSTM) approaches with current attention-based methods using the VQA v2 dataset. The proposed work achieves 51.618% accuracy for Hindi, 57.177% for Kannada, and 56.061% for the Tamil model.
印度视觉问答
视觉问答(VQA)是计算机视觉(CV)和自然语言处理(NLP)的交叉问题,它涉及到使用自然语言根据图像的上下文来回答问题。现有的大多数方法都集中在单语模型上,特别是那些只支持英语的模型。本文提出了一个新的数据集以及单语言和多语言模型,使用基线和基于注意力的架构,支持三种印度语言:印地语、卡纳达语和泰米尔语。我们使用VQA v2数据集比较了传统(CNN + LSTM)方法与当前基于注意力的方法的性能。该方法在印地语、卡纳达语和泰米尔语模型上的准确率分别达到51.618%、57.177%和56.061%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信