Context tree compression of multi-component map images

P. Kopylov, P. Fränti
{"title":"Context tree compression of multi-component map images","authors":"P. Kopylov, P. Fränti","doi":"10.1109/DCC.2002.999959","DOIUrl":null,"url":null,"abstract":"We consider compression of multi-component map images by context modeling and arithmetic coding. We apply an optimized multi-level context tree for modeling the individual binary layers. The context pixels can be located within a search area in the current layer, or in a reference layer that has already been compressed. The binary layers are compressed using an optimized processing sequence that makes maximal utilization of the inter-layer dependencies. The structure of the context tree is a static variable depth binary tree, and the context information is stored only in the leaves of the tree. The proposed technique achieves an improvement of about 25% over a static 16 pixel context template, and 15% over a similar single-level context tree.","PeriodicalId":420897,"journal":{"name":"Proceedings DCC 2002. Data Compression Conference","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings DCC 2002. Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2002.999959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We consider compression of multi-component map images by context modeling and arithmetic coding. We apply an optimized multi-level context tree for modeling the individual binary layers. The context pixels can be located within a search area in the current layer, or in a reference layer that has already been compressed. The binary layers are compressed using an optimized processing sequence that makes maximal utilization of the inter-layer dependencies. The structure of the context tree is a static variable depth binary tree, and the context information is stored only in the leaves of the tree. The proposed technique achieves an improvement of about 25% over a static 16 pixel context template, and 15% over a similar single-level context tree.
多分量地图图像的上下文树压缩
我们考虑通过上下文建模和算术编码对多分量地图图像进行压缩。我们应用了一个优化的多级上下文树来建模单个二进制层。上下文像素可以位于当前层的搜索区域内,也可以位于已经被压缩的参考层中。使用优化的处理序列压缩二进制层,最大限度地利用层间依赖关系。上下文树的结构是静态变深度二叉树,上下文信息仅存储在树的叶子中。所提出的技术比静态16像素上下文模板提高了约25%,比类似的单级上下文树提高了15%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信