Automatic Classification of Research Documents using Textual Entailment

B. Ojokoh, O. Omisore, O. W. Samuel
{"title":"Automatic Classification of Research Documents using Textual Entailment","authors":"B. Ojokoh, O. Omisore, O. W. Samuel","doi":"10.1145/2756406.2756960","DOIUrl":null,"url":null,"abstract":"Exploring the accumulative nature of Internet documents has become a rising issue that requires systematic ways to construct what we need from what we have. Manual and semi-manual document classification techniques have facilitated retrieval and maintenance of document repositories for easy access; however, they are customarily painstaking and labor-intensive. Herein, we propose a document classification model using automatic access of natural language meaning. The model is made up of application, business, and storage layers. The business layer, as a core component, automatically extracts sentences containing keywords from research documents and classifies them using the geometrical similarity of their sentential entailments.","PeriodicalId":256118,"journal":{"name":"Proceedings of the 15th ACM/IEEE-CS Joint Conference on Digital Libraries","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th ACM/IEEE-CS Joint Conference on Digital Libraries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2756406.2756960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Exploring the accumulative nature of Internet documents has become a rising issue that requires systematic ways to construct what we need from what we have. Manual and semi-manual document classification techniques have facilitated retrieval and maintenance of document repositories for easy access; however, they are customarily painstaking and labor-intensive. Herein, we propose a document classification model using automatic access of natural language meaning. The model is made up of application, business, and storage layers. The business layer, as a core component, automatically extracts sentences containing keywords from research documents and classifies them using the geometrical similarity of their sentential entailments.
基于文本蕴涵的研究文献自动分类
探索互联网文档的累积性已经成为一个日益突出的问题,需要系统的方法从我们拥有的东西中构建我们需要的东西。手工和半手工文档分类技术促进了文档存储库的检索和维护,便于访问;然而,他们通常是艰苦和劳动密集型的。本文提出了一种基于自然语言语义自动获取的文档分类模型。该模型由应用程序层、业务层和存储层组成。业务层作为核心组件,自动从研究文档中提取包含关键字的句子,并根据句子蕴涵的几何相似性对其进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信