An Image-Based Identification System of Bubalus Bubalis Using Image Processing Feature Extraction by Linear Discriminant Analysis

Jennifer C. Dela Cruz, Ramon G. Garcia, Raphael Aganon, Nadine Frisnedi, Ellin Jiro Jacob, Raven Justin Ladia
{"title":"An Image-Based Identification System of Bubalus Bubalis Using Image Processing Feature Extraction by Linear Discriminant Analysis","authors":"Jennifer C. Dela Cruz, Ramon G. Garcia, Raphael Aganon, Nadine Frisnedi, Ellin Jiro Jacob, Raven Justin Ladia","doi":"10.1109/icce-asia46551.2019.8941595","DOIUrl":null,"url":null,"abstract":"Animal identification allows producers to keep records on the most important information such as breed, date of birth, and gender. Plastic tags on water buffaloes (Bubalus Bubalis) are prone to damage and in order to be read, they should be restrained. The main objective of the study is to create a portable device that can identify the buffalo by taking its facial image. This study shows that with the use of Linear Discrimant Analysis (LDA), the water buffaloes can be identified by just taking a photo of its face for training images and testing images. In comparison with various algorithms used for the identification of water buffaloes, Local Binary Patterns Histograms (LBPH) shows more accurate results compared to other algorithms such as Principal Component Analysis (PCA), Linear Discriminant Analysis with Support Vector Machine (LDA+SVM) and LDA alone. The output of the simulated training images and testing images show favourable results indicating effectiveness of the study.","PeriodicalId":117814,"journal":{"name":"2019 IEEE International Conference on Consumer Electronics - Asia (ICCE-Asia)","volume":"43 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Consumer Electronics - Asia (ICCE-Asia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icce-asia46551.2019.8941595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Animal identification allows producers to keep records on the most important information such as breed, date of birth, and gender. Plastic tags on water buffaloes (Bubalus Bubalis) are prone to damage and in order to be read, they should be restrained. The main objective of the study is to create a portable device that can identify the buffalo by taking its facial image. This study shows that with the use of Linear Discrimant Analysis (LDA), the water buffaloes can be identified by just taking a photo of its face for training images and testing images. In comparison with various algorithms used for the identification of water buffaloes, Local Binary Patterns Histograms (LBPH) shows more accurate results compared to other algorithms such as Principal Component Analysis (PCA), Linear Discriminant Analysis with Support Vector Machine (LDA+SVM) and LDA alone. The output of the simulated training images and testing images show favourable results indicating effectiveness of the study.
一种基于图像处理特征提取的线性判别分析图像识别系统
动物识别允许生产者记录最重要的信息,如品种、出生日期和性别。水牛(Bubalus Bubalis)身上的塑料标签容易损坏,为了阅读,应该限制它们。这项研究的主要目的是创造一种便携式设备,可以通过拍摄水牛的面部图像来识别它。本研究表明,使用线性判别分析(LDA)方法,只需对训练图像和测试图像拍摄水牛的面部照片即可识别出水牛。与各种用于水牛识别的算法相比,局部二值模式直方图(LBPH)比主成分分析(PCA)、支持向量机线性判别分析(LDA+SVM)和单独LDA等算法显示出更准确的结果。模拟训练图像和测试图像的输出均显示出良好的效果,表明了研究的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信