Filtering normal papanicolaou smear with multi-instance learning

Jie Wang, Xun Liu, Yunjie Chen, Yuan Liu, L. Pan, Huijuan Zhang, Xiang Ji, Su Zhang
{"title":"Filtering normal papanicolaou smear with multi-instance learning","authors":"Jie Wang, Xun Liu, Yunjie Chen, Yuan Liu, L. Pan, Huijuan Zhang, Xiang Ji, Su Zhang","doi":"10.1109/SIPROCESS.2016.7888234","DOIUrl":null,"url":null,"abstract":"Filtering normal papanicolaou smear using computer-aided system can help clinical doctors to detect cervical cancer. In this paper, we propose a scheme to classify cervical cells as normal or abnormal. The pipeline includes preprocessing, perinuclear area extraction, feature extraction and multi-instance learning (MIL). We tried and compared several feature extraction methods, including textural features, manual features and Stacked sparse autoencoder(SSAE) self-learned features. In multi-instance learning, we modify softmax classifier to be adequate for our problem besides some classic MIL algorithms. The results show that manual features or SSAE with modified softmax achieve the best performance and are recognized by clinical pathology doctors.","PeriodicalId":142802,"journal":{"name":"2016 IEEE International Conference on Signal and Image Processing (ICSIP)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Signal and Image Processing (ICSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIPROCESS.2016.7888234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Filtering normal papanicolaou smear using computer-aided system can help clinical doctors to detect cervical cancer. In this paper, we propose a scheme to classify cervical cells as normal or abnormal. The pipeline includes preprocessing, perinuclear area extraction, feature extraction and multi-instance learning (MIL). We tried and compared several feature extraction methods, including textural features, manual features and Stacked sparse autoencoder(SSAE) self-learned features. In multi-instance learning, we modify softmax classifier to be adequate for our problem besides some classic MIL algorithms. The results show that manual features or SSAE with modified softmax achieve the best performance and are recognized by clinical pathology doctors.
基于多实例学习的正常巴氏涂片过滤
利用电脑辅助系统过滤正常的巴氏涂片,有助临床医生发现子宫颈癌。在本文中,我们提出了一个方案分类宫颈细胞正常或异常。该流程包括预处理、核周区域提取、特征提取和多实例学习。我们尝试并比较了几种特征提取方法,包括纹理特征、手动特征和堆叠稀疏自编码(SSAE)自学习特征。在多实例学习中,除了一些经典的MIL算法外,我们还对softmax分类器进行了修改以适应我们的问题。结果表明,手动特征或改进softmax的SSAE表现最佳,得到临床病理医生的认可。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信