Towards understanding block partitioning for sparse Cholesky factorization

Sesh Venugopal, V. Naik
{"title":"Towards understanding block partitioning for sparse Cholesky factorization","authors":"Sesh Venugopal, V. Naik","doi":"10.1109/IPPS.1993.262780","DOIUrl":null,"url":null,"abstract":"The authors examine the effect of two partitioning parameters on the performance of block-based distributed sparse Cholesky factorization. They present result to show the trends in the effect of these parameters on the computation speeds, communication costs, extent of processor idling because of load imbalances, and bookkeeping overheads. These results provide a better understanding in selecting the partitioning parameters so as to reduce the computation and communication costs without increasing the overhead costs or the load imbalance among the processors. Experimental results from a 32-processor iPSC/860 are presented.<<ETX>>","PeriodicalId":248927,"journal":{"name":"[1993] Proceedings Seventh International Parallel Processing Symposium","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993] Proceedings Seventh International Parallel Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPPS.1993.262780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The authors examine the effect of two partitioning parameters on the performance of block-based distributed sparse Cholesky factorization. They present result to show the trends in the effect of these parameters on the computation speeds, communication costs, extent of processor idling because of load imbalances, and bookkeeping overheads. These results provide a better understanding in selecting the partitioning parameters so as to reduce the computation and communication costs without increasing the overhead costs or the load imbalance among the processors. Experimental results from a 32-processor iPSC/860 are presented.<>
理解稀疏Cholesky分解的块划分
研究了两个分区参数对基于块的分布式稀疏Cholesky分解性能的影响。他们给出的结果显示了这些参数对计算速度、通信成本、由于负载不平衡而导致的处理器空闲程度和簿记开销的影响趋势。这些结果为选择分区参数提供了更好的理解,从而在不增加开销成本或处理器之间的负载不平衡的情况下减少计算和通信成本。本文给出了在32处理器iPSC/860上的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信