Neural Machine Translation: English to Hindi

Sahinur Rahman Laskar, Abinash Dutta, Partha Pakray, Sivaji Bandyopadhyay
{"title":"Neural Machine Translation: English to Hindi","authors":"Sahinur Rahman Laskar, Abinash Dutta, Partha Pakray, Sivaji Bandyopadhyay","doi":"10.1109/CICT48419.2019.9066238","DOIUrl":null,"url":null,"abstract":"Machine Translation (MT) attempts to minimize the communication gap among people from various linguistic backgrounds. Automatic translation between pair of different natural languages is the task of MT mechanism, wherein Neural Machine Translation (NMT) attract attention because it offers reasonable translation accuracy in case of the context analysis and fluent translation. In this paper, two different NMT systems are carried out, namely, NMT-1 relies on the Long Short Term Memory (LSTM) based attention model and NMT-2 depends on the transformer model in the context of English to Hindi translation. System results are evaluated using Bilingual Evaluation Understudy (BLEU) metric. The average BLEU scores of NMT-1 system are 35.89 (Test-Set-1), 19.91 (Test-Set-2) and NMT-2 system are 34.42 (Test-Set-1), 24.74 (Test-Set-2) respectively. The results show better performance than existing NMT systems.","PeriodicalId":234540,"journal":{"name":"2019 IEEE Conference on Information and Communication Technology","volume":"184 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Conference on Information and Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICT48419.2019.9066238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Machine Translation (MT) attempts to minimize the communication gap among people from various linguistic backgrounds. Automatic translation between pair of different natural languages is the task of MT mechanism, wherein Neural Machine Translation (NMT) attract attention because it offers reasonable translation accuracy in case of the context analysis and fluent translation. In this paper, two different NMT systems are carried out, namely, NMT-1 relies on the Long Short Term Memory (LSTM) based attention model and NMT-2 depends on the transformer model in the context of English to Hindi translation. System results are evaluated using Bilingual Evaluation Understudy (BLEU) metric. The average BLEU scores of NMT-1 system are 35.89 (Test-Set-1), 19.91 (Test-Set-2) and NMT-2 system are 34.42 (Test-Set-1), 24.74 (Test-Set-2) respectively. The results show better performance than existing NMT systems.
神经机器翻译:英语到印地语
机器翻译(MT)试图将不同语言背景的人之间的沟通差距最小化。不同自然语言对之间的自动翻译是机器翻译机制的任务,其中神经机器翻译(NMT)因其在上下文分析和翻译流畅的情况下提供合理的翻译精度而备受关注。本文采用了两种不同的NMT系统,即NMT-1依赖于基于长短期记忆(LSTM)的注意模型,NMT-2依赖于英语到印地语翻译背景下的转换模型。系统结果使用双语评估替补(BLEU)指标进行评估。NMT-1系统的BLEU平均分为35.89 (Test-Set-1)、19.91 (Test-Set-2), NMT-2系统的BLEU平均分为34.42 (Test-Set-1)、24.74 (Test-Set-2)。结果表明,该系统的性能优于现有的NMT系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信