SmileyCluster

Xiaoyu Wan, Xiaofei Zhou, Zaiqiao Ye, Chase K. Mortensen, Zhengyan Bai
{"title":"SmileyCluster","authors":"Xiaoyu Wan, Xiaofei Zhou, Zaiqiao Ye, Chase K. Mortensen, Zhengyan Bai","doi":"10.1145/3392063.3394440","DOIUrl":null,"url":null,"abstract":"There is an increasing need to prepare young learners to be Artificial Intelligence (AI) capable for the future workforce and everyday life. Machine Learning (ML), as an integral subfield of AI, has become the new engine that revolutionizes practices of knowledge discovery. Making ML experience accessible to young learners, however, remains challenging due to its high demand for mathematical and computational skills. This research focuses on designing novel learning environments that help demystify ML technologies for K-12 students, and also investigating new opportunities for maximizing ML accessibility through integration with scientific discovery in STEM education. We developed SmileyCluster - a hands-on and collaborative learning environment that utilizes glyph-based data visualization and superposition comparative visualization to assist learning an entry-level ML technology, namely k-means clustering. Findings from an initial case study with high school students in a pre-college summer program show that SmileyCluster leads to positive change in learning ML concepts, methods and sense-making of patterns. Findings of this study also shed light on understanding ML as a data-enabled approach to support evidence-based scientific discovery in K-12 STEM education.","PeriodicalId":316877,"journal":{"name":"Proceedings of the Interaction Design and Children Conference","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Interaction Design and Children Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3392063.3394440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

There is an increasing need to prepare young learners to be Artificial Intelligence (AI) capable for the future workforce and everyday life. Machine Learning (ML), as an integral subfield of AI, has become the new engine that revolutionizes practices of knowledge discovery. Making ML experience accessible to young learners, however, remains challenging due to its high demand for mathematical and computational skills. This research focuses on designing novel learning environments that help demystify ML technologies for K-12 students, and also investigating new opportunities for maximizing ML accessibility through integration with scientific discovery in STEM education. We developed SmileyCluster - a hands-on and collaborative learning environment that utilizes glyph-based data visualization and superposition comparative visualization to assist learning an entry-level ML technology, namely k-means clustering. Findings from an initial case study with high school students in a pre-college summer program show that SmileyCluster leads to positive change in learning ML concepts, methods and sense-making of patterns. Findings of this study also shed light on understanding ML as a data-enabled approach to support evidence-based scientific discovery in K-12 STEM education.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信