Vegetation density estimation in the wild

R. Mihail, Wesley I. Cook, Brandi M. Griffin, T. Uyeno, C. Anderson
{"title":"Vegetation density estimation in the wild","authors":"R. Mihail, Wesley I. Cook, Brandi M. Griffin, T. Uyeno, C. Anderson","doi":"10.1145/3190645.3190690","DOIUrl":null,"url":null,"abstract":"Remote sensing has revolutionized the efficiency of vegetation mapping, but such techniques remain impractical for mapping some types of flora over relatively limited spatial extents. We propose a deep-learning based framework for automated detection and planar mapping of an epiphytic plant in a forest from geotagged static imagery using inexpensive cameras. Our pipeline consists of two steps: segmentation and spatial distribution estimation. We evaluate several segmentation methods on a novel dataset of roughly 375 outdoor images with per-pixel labels indicating the presence of Spanish moss. We also evaluate the accuracy of the spatial distribution estimates with respect to field measurements by ecologists for Spanish moss.","PeriodicalId":403177,"journal":{"name":"Proceedings of the ACMSE 2018 Conference","volume":"141 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACMSE 2018 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3190645.3190690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Remote sensing has revolutionized the efficiency of vegetation mapping, but such techniques remain impractical for mapping some types of flora over relatively limited spatial extents. We propose a deep-learning based framework for automated detection and planar mapping of an epiphytic plant in a forest from geotagged static imagery using inexpensive cameras. Our pipeline consists of two steps: segmentation and spatial distribution estimation. We evaluate several segmentation methods on a novel dataset of roughly 375 outdoor images with per-pixel labels indicating the presence of Spanish moss. We also evaluate the accuracy of the spatial distribution estimates with respect to field measurements by ecologists for Spanish moss.
野外植被密度估算
遥感已经彻底改变了植被制图的效率,但是这种技术对于在相对有限的空间范围内绘制某些类型的植物群仍然是不切实际的。我们提出了一个基于深度学习的框架,用于使用廉价相机从地理标记的静态图像中自动检测和平面映射森林中的附生植物。我们的管道包括两个步骤:分割和空间分布估计。我们在大约375张户外图像的新数据集上评估了几种分割方法,这些图像的每像素标签表明西班牙苔藓的存在。我们还评估了空间分布估计的准确性,相对于生态学家对西班牙苔藓的实地测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信