{"title":"Data-Driven Backstepping Control of Chemical Process","authors":"Jiawen Gao, Jingwen Huang","doi":"10.1109/DDCLS49620.2020.9275044","DOIUrl":null,"url":null,"abstract":"Modeling and control design of complex chemical processes are challenge tasks because of their multi-variable, timedelay and non-linear features. On the other hand, the plant dynamics are hard to characterize precisely on line when facing uncertain disturbance. In the light of this, this paper presents a data-driven backstepping control scheme for the nonlinear chemical process. Compared with other regular chemical process control schemes, the proposed scheme is independent of specific mathematical models, and free of decoupling operation, linearization, or off-line recognition and modeling. By constructing Lyapunov function and feedback control rate based on real-time data, the integral stability is guaranteed. Williams-Otto reactor example is provided to demonstrate the effectiveness and applicability of the scheme.","PeriodicalId":420469,"journal":{"name":"2020 IEEE 9th Data Driven Control and Learning Systems Conference (DDCLS)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 9th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS49620.2020.9275044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Modeling and control design of complex chemical processes are challenge tasks because of their multi-variable, timedelay and non-linear features. On the other hand, the plant dynamics are hard to characterize precisely on line when facing uncertain disturbance. In the light of this, this paper presents a data-driven backstepping control scheme for the nonlinear chemical process. Compared with other regular chemical process control schemes, the proposed scheme is independent of specific mathematical models, and free of decoupling operation, linearization, or off-line recognition and modeling. By constructing Lyapunov function and feedback control rate based on real-time data, the integral stability is guaranteed. Williams-Otto reactor example is provided to demonstrate the effectiveness and applicability of the scheme.