Efficient Computation of Joint Direction-Of-Arrival and Frequency Estimation

Yuheng He, K. Hueske, Jurgen Gotze, E. Coersmeier
{"title":"Efficient Computation of Joint Direction-Of-Arrival and Frequency Estimation","authors":"Yuheng He, K. Hueske, Jurgen Gotze, E. Coersmeier","doi":"10.1109/ISSPIT.2008.4775696","DOIUrl":null,"url":null,"abstract":"The efficient computation of joint direction-of-arrival (DOA) and frequency estimation from the data matrix obtained from a sensor array is discussed. High-resolution ESPRIT/MUSIC algorithms are used to compute the estimates. A preprocessing step uses a two-sided DFT (computed using FFT) and applies a threshold to generate a sparse matrix from the given data matrix. The Lanczos method is used to compute the SVD/EVD of the sparse matrix. This results in a reduced computational complexity if the complexity of the preprocessing step is small compared to the reduction of the computational effort obtained by exploiting the sparsity of the matrix. We also compare this procedure with the estimations based on one sensor and one snapshot of the sensor array, respectively. In this case we can build Hankel matrices from the data samples and apply ESPRIT/MUSIC methods to these Hankel matrices and these matrices after the preprocessing step, respectively. This also yields a reduced computational complexity (again using Lanczos' method) but decreases the accuracy of the estimates. We compare the computational effort and the mean square error (MSE) of the estimates for the different approaches.","PeriodicalId":213756,"journal":{"name":"2008 IEEE International Symposium on Signal Processing and Information Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Symposium on Signal Processing and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2008.4775696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The efficient computation of joint direction-of-arrival (DOA) and frequency estimation from the data matrix obtained from a sensor array is discussed. High-resolution ESPRIT/MUSIC algorithms are used to compute the estimates. A preprocessing step uses a two-sided DFT (computed using FFT) and applies a threshold to generate a sparse matrix from the given data matrix. The Lanczos method is used to compute the SVD/EVD of the sparse matrix. This results in a reduced computational complexity if the complexity of the preprocessing step is small compared to the reduction of the computational effort obtained by exploiting the sparsity of the matrix. We also compare this procedure with the estimations based on one sensor and one snapshot of the sensor array, respectively. In this case we can build Hankel matrices from the data samples and apply ESPRIT/MUSIC methods to these Hankel matrices and these matrices after the preprocessing step, respectively. This also yields a reduced computational complexity (again using Lanczos' method) but decreases the accuracy of the estimates. We compare the computational effort and the mean square error (MSE) of the estimates for the different approaches.
联合到达方向和频率估计的高效计算
讨论了基于传感器阵列数据矩阵的联合到达方向(DOA)和频率估计的有效计算。高分辨率ESPRIT/MUSIC算法用于计算估计。预处理步骤使用双边DFT(使用FFT计算)并应用阈值从给定的数据矩阵生成稀疏矩阵。采用Lanczos方法计算稀疏矩阵的SVD/EVD。如果预处理步骤的复杂性与利用矩阵稀疏性所减少的计算工作量相比较小,则会导致计算复杂性的降低。我们还将此过程与基于单个传感器和传感器阵列快照的估计进行了比较。在这种情况下,我们可以从数据样本中构建Hankel矩阵,并分别对这些Hankel矩阵和预处理步骤后的这些矩阵应用ESPRIT/MUSIC方法。这也降低了计算复杂度(再次使用Lanczos的方法),但降低了估计的准确性。我们比较了不同方法估计的计算量和均方误差(MSE)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信