Certifying the Thurston Norm via SL(2,ℂ)-twisted Homology

I. Agol, N. Dunfield
{"title":"Certifying the Thurston Norm via SL(2,ℂ)-twisted Homology","authors":"I. Agol, N. Dunfield","doi":"10.1515/9780691185897-002","DOIUrl":null,"url":null,"abstract":"We study when the Thurston norm is detected by twisted Alexander polynomials associated to representations of the 3-manifold group to SL(2, C). Specifically, we show that the hyperbolic torsion polynomial determines the genus for a large class of hyperbolic knots in the 3-sphere which includes all special arborescent knots and many knots whose ordinary Alexander polynomial is trivial. This theorem follows from results showing that the tautness of certain sutured manifolds can be certified by checking that they are a product from the point of view of homology with coefficients twisted by an SL(2, C)-representation.","PeriodicalId":404905,"journal":{"name":"What's Next?","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"What's Next?","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/9780691185897-002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We study when the Thurston norm is detected by twisted Alexander polynomials associated to representations of the 3-manifold group to SL(2, C). Specifically, we show that the hyperbolic torsion polynomial determines the genus for a large class of hyperbolic knots in the 3-sphere which includes all special arborescent knots and many knots whose ordinary Alexander polynomial is trivial. This theorem follows from results showing that the tautness of certain sutured manifolds can be certified by checking that they are a product from the point of view of homology with coefficients twisted by an SL(2, C)-representation.
用SL(2,)-扭转同调证明Thurston范数
我们研究了与3流形群的表示相关联的扭曲亚历山大多项式何时检测Thurston范数。具体地说,我们证明了双曲扭转多项式决定了3球中包含所有特殊树状结和许多普通亚历山大多项式平凡的结的一大类双曲结的格。这个定理是由一些结果推导出来的,这些结果表明,某些缝合流形的紧性可以通过用SL(2, C)-表示从同调的角度检验它们是扭曲系数的乘积来证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信