Topographic Connectionist Unsupervised Learning for RFID Behavior Data Mining

Guénaël Cabanes, Younès Bennani, Claire Chartagnat, D. Fresneau
{"title":"Topographic Connectionist Unsupervised Learning for RFID Behavior Data Mining","authors":"Guénaël Cabanes, Younès Bennani, Claire Chartagnat, D. Fresneau","doi":"10.5220/0001733400630072","DOIUrl":null,"url":null,"abstract":"Radio Frequency IDentification (RFID) is an advanced tracking technology that can be used to study the spatial organization of animal societies. The aim of this work is to build a new RFID-based autonomous system to follow individuals spatio-temporal activity, which is not currently available, and to develop new tools for automatic data mining. We study here how to transform these data to obtain knowledge about the division of labor and intra-colonial cooperation and conflict in an ant colony by developing a new unsupervised learning data mining method (DS2L-SOM : Density-based Simultaneous Two-Level Self Organizing Map) to find homogeneous clusters (i.e., sets of individual witch share a distinctive behavior). This method is very fast and efficient and it also allows a very useful visualization of results.","PeriodicalId":164388,"journal":{"name":"International Workshop on RFID Technology","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on RFID Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0001733400630072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Radio Frequency IDentification (RFID) is an advanced tracking technology that can be used to study the spatial organization of animal societies. The aim of this work is to build a new RFID-based autonomous system to follow individuals spatio-temporal activity, which is not currently available, and to develop new tools for automatic data mining. We study here how to transform these data to obtain knowledge about the division of labor and intra-colonial cooperation and conflict in an ant colony by developing a new unsupervised learning data mining method (DS2L-SOM : Density-based Simultaneous Two-Level Self Organizing Map) to find homogeneous clusters (i.e., sets of individual witch share a distinctive behavior). This method is very fast and efficient and it also allows a very useful visualization of results.
RFID行为数据挖掘的拓扑连接无监督学习
射频识别(RFID)是一种先进的跟踪技术,可以用来研究动物社会的空间组织。这项工作的目的是建立一个新的基于rfid的自主系统来跟踪个人的时空活动,这是目前不可用的,并为自动数据挖掘开发新的工具。本文通过开发一种新的无监督学习数据挖掘方法(DS2L-SOM: Density-based Simultaneous Two-Level Self - Organizing Map)来寻找同质集群(即具有独特行为的个体集合),研究如何对这些数据进行转换,从而获得蚁群中劳动分工和群体内合作与冲突的知识。这种方法非常快速和有效,它还允许非常有用的结果可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信