Non-negative dictionary learning with pairwise partial similarity constraint

Xu Zhou, Pak Lun Kevin Ding, Baoxin Li
{"title":"Non-negative dictionary learning with pairwise partial similarity constraint","authors":"Xu Zhou, Pak Lun Kevin Ding, Baoxin Li","doi":"10.1109/ICME.2017.8019392","DOIUrl":null,"url":null,"abstract":"Discriminative dictionary learning has been widely used in many applications such as face retrieval / recognition and image classification, where the labels of the training data are utilized to improve the discriminative power of the learned dictionary. This paper deals with a new problem of learning a dictionary for associating pairs of images in applications such as face image retrieval. Compared with a typical supervised learning task, in this case the labeling information is very limited (e.g. only some training pairs are known to be associated). Further, associated pairs may be considered similar only after excluding certain regions (e.g. sunglasses in a face image). We formulate a dictionary learning problem under these considerations and design an algorithm to solve the problem. We also provide a proof for the convergence of the algorithm. Experiments and results suggest that the proposed method is advantageous over common baselines.","PeriodicalId":330977,"journal":{"name":"2017 IEEE International Conference on Multimedia and Expo (ICME)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2017.8019392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Discriminative dictionary learning has been widely used in many applications such as face retrieval / recognition and image classification, where the labels of the training data are utilized to improve the discriminative power of the learned dictionary. This paper deals with a new problem of learning a dictionary for associating pairs of images in applications such as face image retrieval. Compared with a typical supervised learning task, in this case the labeling information is very limited (e.g. only some training pairs are known to be associated). Further, associated pairs may be considered similar only after excluding certain regions (e.g. sunglasses in a face image). We formulate a dictionary learning problem under these considerations and design an algorithm to solve the problem. We also provide a proof for the convergence of the algorithm. Experiments and results suggest that the proposed method is advantageous over common baselines.
基于两两部分相似度约束的非负字典学习
判别字典学习已广泛应用于人脸检索/识别、图像分类等领域,利用训练数据的标签来提高学习到的字典的判别能力。本文研究了在人脸图像检索等应用中,为关联图像对而学习字典的新问题。与典型的监督学习任务相比,在这种情况下,标记信息非常有限(例如,只有一些已知的训练对是相关的)。此外,只有在排除某些区域(例如,面部图像中的太阳镜)之后,相关的对才能被认为是相似的。在这些考虑下,我们提出了一个字典学习问题,并设计了一个算法来解决这个问题。并给出了算法收敛性的证明。实验和结果表明,该方法优于普通基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信