The Information Funnel: Exploiting Named Data for Information-Maximizing Data Collection

Shiguang Wang, T. Abdelzaher, S. Gajendran, Ajith Herga, Sachin Kulkarni, Shen Li, Hengchang Liu, C. Suresh, Abhishek Sreenath, Hongwei Wang, William Dron, Alice Leung, R. Govindan, J. P. Hancock
{"title":"The Information Funnel: Exploiting Named Data for Information-Maximizing Data Collection","authors":"Shiguang Wang, T. Abdelzaher, S. Gajendran, Ajith Herga, Sachin Kulkarni, Shen Li, Hengchang Liu, C. Suresh, Abhishek Sreenath, Hongwei Wang, William Dron, Alice Leung, R. Govindan, J. P. Hancock","doi":"10.1109/DCOSS.2014.32","DOIUrl":null,"url":null,"abstract":"This paper describes the exploitation of hierarchical data names to achieve information-utility maximizing data collection in social sensing applications. We describe a novel transport abstraction, called the information funnel. It encapsulates a data collection protocol for social sensing that maximizes a measure of delivered information utility, that is the minimized data redundancy, by diversifying the data objects to be collected. The abstraction leverages named-data networking, a communication paradigm where data objects are named instead of hosts. We argue that this paradigm is especially suited for utility-maximizing transport in resource constrained environments, because hierarchical data names give rise to a notion of distance between named objects that is a function of only the topology of the name tree. This distance, in turn, can expose similarities between named objects that can be leveraged for minimizing redundancy among objects transmitted over bottlenecks, thereby maximizing their aggregate utility. With a proper hierarchical name space design, our protocol prioritizes transmission of data objects over bottlenecks to maximize information utility, with very weak assumptions on the utility function. This prioritization is achieved merely by comparing data name prefixes, without knowing application-level name semantics, which makes it generalizable across a wide range of applications. Evaluation results show that the information funnel improves the utility of the collected data objects compared to other lossy protocols.","PeriodicalId":351707,"journal":{"name":"2014 IEEE International Conference on Distributed Computing in Sensor Systems","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Distributed Computing in Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCOSS.2014.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

This paper describes the exploitation of hierarchical data names to achieve information-utility maximizing data collection in social sensing applications. We describe a novel transport abstraction, called the information funnel. It encapsulates a data collection protocol for social sensing that maximizes a measure of delivered information utility, that is the minimized data redundancy, by diversifying the data objects to be collected. The abstraction leverages named-data networking, a communication paradigm where data objects are named instead of hosts. We argue that this paradigm is especially suited for utility-maximizing transport in resource constrained environments, because hierarchical data names give rise to a notion of distance between named objects that is a function of only the topology of the name tree. This distance, in turn, can expose similarities between named objects that can be leveraged for minimizing redundancy among objects transmitted over bottlenecks, thereby maximizing their aggregate utility. With a proper hierarchical name space design, our protocol prioritizes transmission of data objects over bottlenecks to maximize information utility, with very weak assumptions on the utility function. This prioritization is achieved merely by comparing data name prefixes, without knowing application-level name semantics, which makes it generalizable across a wide range of applications. Evaluation results show that the information funnel improves the utility of the collected data objects compared to other lossy protocols.
信息漏斗:利用命名数据实现信息最大化
本文描述了在社会传感应用中利用分层数据名称实现信息效用最大化的数据采集方法。我们描述了一种新的传输抽象,称为信息漏斗。它封装了一个用于社会感知的数据收集协议,该协议通过多样化要收集的数据对象来最大化交付的信息效用的度量,即最小化数据冗余。抽象利用了命名数据网络,这是一种通信范例,其中数据对象被命名,而不是主机。我们认为,这种范式特别适合于资源受限环境中的效用最大化传输,因为分层数据名称产生了命名对象之间的距离概念,该概念仅是名称树拓扑的函数。反过来,这个距离可以暴露命名对象之间的相似性,可以利用这些相似性来最小化通过瓶颈传输的对象之间的冗余,从而最大化它们的总效用。通过适当的分层名称空间设计,我们的协议将数据对象的传输优先于瓶颈,以最大化信息效用,对效用函数的假设非常弱。这种优先级只需要通过比较数据名称前缀来实现,而不需要了解应用程序级别的名称语义,这使得它可以在广泛的应用程序中推广。评估结果表明,与其他有损协议相比,信息漏斗提高了收集数据对象的利用率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信