Spatially constrained fuzzy hyper-prototype clustering with application to brain tissue segmentation

Jin Liu, T. Pham, W. Wen, P. Sachdev
{"title":"Spatially constrained fuzzy hyper-prototype clustering with application to brain tissue segmentation","authors":"Jin Liu, T. Pham, W. Wen, P. Sachdev","doi":"10.1109/BIBM.2010.5706598","DOIUrl":null,"url":null,"abstract":"Motivated by fuzzy clustering incorporating spatial information, we present a spatially constrained fuzzy hyper-prototype clustering algorithm in this paper. This approach uses hyperplanes as cluster centers and adds a spatial regularizer into the fuzzy objective function. Formulation of the new fuzzy objective function is presented; and its iterative numerical solution, which minimizes the objective function, derived. We applied the proposed algorithm for the segmentation of brain MRI data. Experimental results have demonstrated that the proposed clustering method outperforms other fuzzy clustering models.","PeriodicalId":275098,"journal":{"name":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2010.5706598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Motivated by fuzzy clustering incorporating spatial information, we present a spatially constrained fuzzy hyper-prototype clustering algorithm in this paper. This approach uses hyperplanes as cluster centers and adds a spatial regularizer into the fuzzy objective function. Formulation of the new fuzzy objective function is presented; and its iterative numerical solution, which minimizes the objective function, derived. We applied the proposed algorithm for the segmentation of brain MRI data. Experimental results have demonstrated that the proposed clustering method outperforms other fuzzy clustering models.
空间约束模糊超原型聚类在脑组织分割中的应用
基于空间信息的模糊聚类,提出了一种空间约束的模糊超原型聚类算法。该方法采用超平面作为聚类中心,并在模糊目标函数中加入空间正则化器。给出了新的模糊目标函数的表达式;并推导出目标函数极小化的迭代数值解。我们将该算法应用于脑MRI数据的分割。实验结果表明,本文提出的聚类方法优于其他模糊聚类模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信