{"title":"Discriminative Subgraph Mining for Protein Classification","authors":"Ning Jin, Calvin Young, Wei Wang","doi":"10.4018/jkdb.2010070103","DOIUrl":null,"url":null,"abstract":"Protein classification can be performed by representing 3-D protein structures by graphs and then classifying the corresponding graphs. One effective way to classify such graphs is to use frequent subgraph patterns as features; however, the effectiveness of using subgraph patterns in graph classification is often hampered by the large search space of subgraph patterns. In this paper, the authors present two efficient discriminative subgraph mining algorithms: COM and GAIA. These algorithms directly search for discriminative subgraph patterns rather than frequent subgraph patterns which can be used to generate classification rules. Experimental results show that COM and GAIA can achieve high classification accuracy and runtime efficiency. Additionally, they find substructures that are very close to the proteins’ actual active sites.","PeriodicalId":160270,"journal":{"name":"Int. J. Knowl. Discov. Bioinform.","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Knowl. Discov. Bioinform.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/jkdb.2010070103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Protein classification can be performed by representing 3-D protein structures by graphs and then classifying the corresponding graphs. One effective way to classify such graphs is to use frequent subgraph patterns as features; however, the effectiveness of using subgraph patterns in graph classification is often hampered by the large search space of subgraph patterns. In this paper, the authors present two efficient discriminative subgraph mining algorithms: COM and GAIA. These algorithms directly search for discriminative subgraph patterns rather than frequent subgraph patterns which can be used to generate classification rules. Experimental results show that COM and GAIA can achieve high classification accuracy and runtime efficiency. Additionally, they find substructures that are very close to the proteins’ actual active sites.