Asymptotic cumulants of some information criteria

H. Ogasawara
{"title":"Asymptotic cumulants of some information criteria","authors":"H. Ogasawara","doi":"10.5183/JJSCS.1512001_225","DOIUrl":null,"url":null,"abstract":"Asymptotic cumulants of the Akaike and Takeuchi information criteria are given under possible model misspecification up to the fourth order with the higher-order asymptotic variances, where two versions of the latter information criterion are defined using observed and estimated expected information matrices. The asymptotic cumulants are provided before and after studentization using the parameter estimators by the weighted-score method, which include the maximum likelihood and Bayes modal estimators as special cases. Higher-order bias corrections of the criteria are derived using log-likelihood derivatives, which yields simple results for cases under canonical parametrization in the exponential family. It is shown that in these cases the Jeffreys prior gives the vanishing higher-order bias of the Akaike information criterion. The results are illustrated by three examples. Simulations for model selection in regression and interval estimation are also given.","PeriodicalId":338719,"journal":{"name":"Journal of the Japanese Society of Computational Statistics","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Japanese Society of Computational Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5183/JJSCS.1512001_225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Asymptotic cumulants of the Akaike and Takeuchi information criteria are given under possible model misspecification up to the fourth order with the higher-order asymptotic variances, where two versions of the latter information criterion are defined using observed and estimated expected information matrices. The asymptotic cumulants are provided before and after studentization using the parameter estimators by the weighted-score method, which include the maximum likelihood and Bayes modal estimators as special cases. Higher-order bias corrections of the criteria are derived using log-likelihood derivatives, which yields simple results for cases under canonical parametrization in the exponential family. It is shown that in these cases the Jeffreys prior gives the vanishing higher-order bias of the Akaike information criterion. The results are illustrated by three examples. Simulations for model selection in regression and interval estimation are also given.
一些信息准则的渐近累积量
Akaike和Takeuchi信息准则的渐近累积量在可能的模型错配下达到四阶,具有高阶渐近方差,其中后者信息准则的两个版本使用观察和估计的期望信息矩阵来定义。用加权分数法给出了参数估计量在学生化前后的渐近累积量,其中最大似然估计量和贝叶斯模态估计量是特例。使用对数似然导数推导了准则的高阶偏差修正,对于指数族中典型参数化的情况,得到了简单的结果。结果表明,在这些情况下,Jeffreys先验给出了Akaike信息准则的高阶偏差消失。通过三个算例说明了结果。给出了回归和区间估计中模型选择的仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信