A note on parallel preconditioning for all-at-once evolutionary PDEs

A. Goddard, A. Wathen
{"title":"A note on parallel preconditioning for all-at-once evolutionary PDEs","authors":"A. Goddard, A. Wathen","doi":"10.1553/ETNA_VOL51S135","DOIUrl":null,"url":null,"abstract":"McDonald, Pestana and Wathen (SIAM J. Sci. Comput. 40(2), pp. A2012-A1033, 2018) present a method for preconditioning of time-dependent PDEs via approximation by a nearby time-periodic problem, that is, they employ circulant-related matrices as preconditioners for the non-symmetric block Toeplitz matrices which arise from an all-at-once formulation. They suggest that such an approach might be efficiently implemented in parallel. \nIn this short article, we present parallel numerical results for their preconditioner which exhibit strong scaling. We also extend their preconditioner via a Neumann series approach, which also allows for efficient parallel execution. Our simple implementation (in C++ and MPI) is available at the Git repository PARALAAOMPI. this https URL","PeriodicalId":282695,"journal":{"name":"ETNA - Electronic Transactions on Numerical Analysis","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETNA - Electronic Transactions on Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/ETNA_VOL51S135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

McDonald, Pestana and Wathen (SIAM J. Sci. Comput. 40(2), pp. A2012-A1033, 2018) present a method for preconditioning of time-dependent PDEs via approximation by a nearby time-periodic problem, that is, they employ circulant-related matrices as preconditioners for the non-symmetric block Toeplitz matrices which arise from an all-at-once formulation. They suggest that such an approach might be efficiently implemented in parallel. In this short article, we present parallel numerical results for their preconditioner which exhibit strong scaling. We also extend their preconditioner via a Neumann series approach, which also allows for efficient parallel execution. Our simple implementation (in C++ and MPI) is available at the Git repository PARALAAOMPI. this https URL
关于一次性进化偏微分方程并行预处理的注解
McDonald, Pestana and Wathen (SIAM J. Sci.)计算。40(2),pp. A2012-A1033, 2018)提出了一种通过附近的时间周期问题近似来预处理时间相关偏微分方程的方法,即,它们使用循环相关矩阵作为由一次性公式产生的非对称块Toeplitz矩阵的预处理条件。他们建议,这种方法可以并行有效地实施。在这篇简短的文章中,我们给出了它们的预条件具有强标度的并行数值结果。我们还通过诺伊曼级数方法扩展了它们的前置条件,这也允许有效的并行执行。我们的简单实现(c++和MPI)可以在Git存储库paraaompi中获得。此https URL
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信