A Monte Carlo Simulation Platform for Studying the Behavior of Wind-PV-Diesel-Battery Powered Mobile Telephony Base Stations

Č. Zeljković, Predrag Mršić, Bojan Erceg, Đorđe Lekić, Nemanja Kitić, P. Matić, T. Șoimoșan
{"title":"A Monte Carlo Simulation Platform for Studying the Behavior of Wind-PV-Diesel-Battery Powered Mobile Telephony Base Stations","authors":"Č. Zeljković, Predrag Mršić, Bojan Erceg, Đorđe Lekić, Nemanja Kitić, P. Matić, T. Șoimoșan","doi":"10.1109/PMAPS47429.2020.9183576","DOIUrl":null,"url":null,"abstract":"This paper discusses the problem of powering a remote rural mobile base station using a standalone hybrid renewable energy system. A wind turbine and photovoltaic system are employed as the complementary power generation technologies, while the diesel generator serves as a backup power supply. A battery is required to reduce the impact of intermittency of renewable sources. On the consumption side, along with telecommunication electronic equipment, the consumption of cooling devices as a result of the ambient temperature, is also taken into account. The behavior of the base station in electrical and thermal terms is tested using the sequential Monte Carlo simulation. Adequate models have been used to generate wind, irradiance, and temperature input series, using the monthly averages for calibration, as the statistic information that is widely available in meteorological atlases, even for remote rural locations. The developed software provides all the variables of interest either in the form of chronological diagrams or probability histograms. The simulation platform can also be incorporated as a module of an algorithm for selection of optimal capacity of the generating system elements and for the optimal control of the cooling devices.","PeriodicalId":126918,"journal":{"name":"2020 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PMAPS47429.2020.9183576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper discusses the problem of powering a remote rural mobile base station using a standalone hybrid renewable energy system. A wind turbine and photovoltaic system are employed as the complementary power generation technologies, while the diesel generator serves as a backup power supply. A battery is required to reduce the impact of intermittency of renewable sources. On the consumption side, along with telecommunication electronic equipment, the consumption of cooling devices as a result of the ambient temperature, is also taken into account. The behavior of the base station in electrical and thermal terms is tested using the sequential Monte Carlo simulation. Adequate models have been used to generate wind, irradiance, and temperature input series, using the monthly averages for calibration, as the statistic information that is widely available in meteorological atlases, even for remote rural locations. The developed software provides all the variables of interest either in the form of chronological diagrams or probability histograms. The simulation platform can also be incorporated as a module of an algorithm for selection of optimal capacity of the generating system elements and for the optimal control of the cooling devices.
研究风能-光伏-柴油电池供电的移动电话基站行为的蒙特卡罗仿真平台
本文讨论了使用独立的混合可再生能源系统为偏远农村移动基站供电的问题。采用风力发电机组和光伏发电系统作为互补发电技术,柴油发电机组作为备用电源。需要电池来减少可再生能源间歇性的影响。在消耗方面,除了电信电子设备外,由于环境温度的影响,冷却设备的消耗也被考虑在内。使用时序蒙特卡罗模拟测试了基站在电和热方面的行为。已使用适当的模式来产生风、辐照度和温度输入序列,使用月平均值进行校准,作为在气象地图集中广泛提供的统计信息,即使在偏远的农村地区也是如此。开发的软件以时间顺序图或概率直方图的形式提供了所有感兴趣的变量。该仿真平台还可以作为一种算法的模块,用于选择发电系统元件的最优容量和冷却装置的最优控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信