Deep Learning Interpretation

J. Sang
{"title":"Deep Learning Interpretation","authors":"J. Sang","doi":"10.1145/3240508.3241472","DOIUrl":null,"url":null,"abstract":"Deep learning has been successfully exploited in addressing different multimedia problems in recent years. The academic researchers are now transferring their attention from identifying what problem deep learning CAN address to exploring what problem deep learning CAN NOT address. This tutorial starts with a summarization of six 'CAN NOT' problems deep learning fails to solve at the current stage, i.e., low stability, debugging difficulty, poor parameter transparency, poor incrementality, poor reasoning ability, and machine bias. These problems share a common origin from the lack of deep learning interpretation. This tutorial attempts to correspond the six 'NOT' problems to three levels of deep learning interpretation: (1) Locating - accurately and efficiently locating which feature contributes much to the output. (2) Understanding - bidirectional semantic accessing between human knowledge and deep learning algorithm. (3) Expandability - well storing, accumulating and reusing the models learned from deep learning. Existing studies falling into these three levels will be reviewed in detail, and a discussion on the future interesting directions will be provided in the end.","PeriodicalId":339857,"journal":{"name":"Proceedings of the 26th ACM international conference on Multimedia","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3240508.3241472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Deep learning has been successfully exploited in addressing different multimedia problems in recent years. The academic researchers are now transferring their attention from identifying what problem deep learning CAN address to exploring what problem deep learning CAN NOT address. This tutorial starts with a summarization of six 'CAN NOT' problems deep learning fails to solve at the current stage, i.e., low stability, debugging difficulty, poor parameter transparency, poor incrementality, poor reasoning ability, and machine bias. These problems share a common origin from the lack of deep learning interpretation. This tutorial attempts to correspond the six 'NOT' problems to three levels of deep learning interpretation: (1) Locating - accurately and efficiently locating which feature contributes much to the output. (2) Understanding - bidirectional semantic accessing between human knowledge and deep learning algorithm. (3) Expandability - well storing, accumulating and reusing the models learned from deep learning. Existing studies falling into these three levels will be reviewed in detail, and a discussion on the future interesting directions will be provided in the end.
深度学习解释
近年来,深度学习已成功地应用于解决各种多媒体问题。学术研究人员现在将他们的注意力从确定深度学习可以解决什么问题转移到探索深度学习不能解决什么问题。本教程首先总结了深度学习在当前阶段无法解决的六个“CAN NOT”问题,即稳定性低、调试困难、参数透明度差、递增性差、推理能力差和机器偏差。这些问题有一个共同的根源,那就是缺乏深度学习解释。本教程试图将六个“不”问题对应于深度学习解释的三个层次:(1)定位-准确有效地定位哪个特征对输出贡献很大。(2)理解——人类知识与深度学习算法之间的双向语义访问。(3)可扩展性——很好地存储、积累和重用从深度学习中学习到的模型。本文将对这三个层次的现有研究进行详细回顾,并对未来的研究方向进行讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信