{"title":"Simple and sophisticated inning summary generation based on encoder-decoder model and transfer learning","authors":"Y. Tagawa, Kazutaka Shimada","doi":"10.1109/IALP.2017.8300591","DOIUrl":null,"url":null,"abstract":"This paper describes an inning summarization method for a baseball game by using an encoder-decoder model. Each inning in a baseball game contains some events, such as hits, strikeouts, homeruns and scoring. Simplified description of the events leads to the improvement of readability of the inning information. Our method learns a relation between play-by-play data in each inning and inning reports. We also incorporate sophisticated expressions acquired from game summaries with the model. We call them Game-changing Phrase, GP. One problem in our task is the size of training data for the learning. To solve this problem, we apply a transfer learning approach into our method. In the experiment, we evaluate the effectiveness of our method with the transfer learning.","PeriodicalId":183586,"journal":{"name":"2017 International Conference on Asian Language Processing (IALP)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Asian Language Processing (IALP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2017.8300591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper describes an inning summarization method for a baseball game by using an encoder-decoder model. Each inning in a baseball game contains some events, such as hits, strikeouts, homeruns and scoring. Simplified description of the events leads to the improvement of readability of the inning information. Our method learns a relation between play-by-play data in each inning and inning reports. We also incorporate sophisticated expressions acquired from game summaries with the model. We call them Game-changing Phrase, GP. One problem in our task is the size of training data for the learning. To solve this problem, we apply a transfer learning approach into our method. In the experiment, we evaluate the effectiveness of our method with the transfer learning.