Design of Optimal PID[FOPID] Controller for Linear System

Rinki Maurya, M. Bhandari
{"title":"Design of Optimal PID[FOPID] Controller for Linear System","authors":"Rinki Maurya, M. Bhandari","doi":"10.1109/ICMETE.2016.45","DOIUrl":null,"url":null,"abstract":"This article propose a hybrid fractional order PIDcontroller which is optimized with classical proportional integralderivative controller (PID) gives an exquisite response. Here thetwo tuning method are used to evaluate the parameters of PIDcontroller, first one is Ziegler-Nichols and other one is Astrom-Hagglund method. The parameters of FO-PID controller in useas the proportional constant, integral constant are by Ziegler-Nichols and derivative constant by Astrom-Hagglund method. In order to obtain required solutions, two non-linear equationsare derived to find the fractional order of the integral term andderivative term The step response shows the benefits of abovediscussed hybrid fractional order PID controller when comparingwith existing controller. Simulated results are carried by matlab2012(a).","PeriodicalId":167368,"journal":{"name":"2016 International Conference on Micro-Electronics and Telecommunication Engineering (ICMETE)","volume":"241 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Micro-Electronics and Telecommunication Engineering (ICMETE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMETE.2016.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This article propose a hybrid fractional order PIDcontroller which is optimized with classical proportional integralderivative controller (PID) gives an exquisite response. Here thetwo tuning method are used to evaluate the parameters of PIDcontroller, first one is Ziegler-Nichols and other one is Astrom-Hagglund method. The parameters of FO-PID controller in useas the proportional constant, integral constant are by Ziegler-Nichols and derivative constant by Astrom-Hagglund method. In order to obtain required solutions, two non-linear equationsare derived to find the fractional order of the integral term andderivative term The step response shows the benefits of abovediscussed hybrid fractional order PID controller when comparingwith existing controller. Simulated results are carried by matlab2012(a).
线性系统最优PID[FOPID]控制器设计
本文提出了一种混合分数阶PID控制器,该控制器在经典比例积分导数控制器(PID)的基础上进行了优化,得到了良好的响应。本文采用Ziegler-Nichols法和Astrom-Hagglund法两种整定方法对pid控制器的参数进行整定。其中比例常数、积分常数采用Ziegler-Nichols法,导数常数采用Astrom-Hagglund法。为了得到所需的解,推导了两个非线性方程来求积分项和导数项的分数阶。阶跃响应表明,与现有的控制器相比,上述混合分数阶PID控制器具有优势。仿真结果由matlab2012(a)承载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信