Tensor-Based Multiple Object Trajectory Indexing and Retrieval

Xiang Ma, F. Bashir, A. Khokhar, D. Schonfeld
{"title":"Tensor-Based Multiple Object Trajectory Indexing and Retrieval","authors":"Xiang Ma, F. Bashir, A. Khokhar, D. Schonfeld","doi":"10.1109/ICME.2006.262468","DOIUrl":null,"url":null,"abstract":"This paper presents novel tensor-based object trajectory modelling techniques for simultaneous representation of multiple objects motion trajectories in a content based indexing and retrieval framework. Three different tensor decomposition techniques-PARAFAC, HOSVD and multiple-SVD-are explored to achieve this goal with the aim of using a minimum set of coefficients and data-dependant bases. These tensor decompositions have been applied to represent full as well as segmented trajectories. Our simulation results show that the PARAFAC-based representation provides higher compression ratio, superior precision-recall metrics, and smaller query processing time compared to the other tensor-based approaches","PeriodicalId":339258,"journal":{"name":"2006 IEEE International Conference on Multimedia and Expo","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Multimedia and Expo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2006.262468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper presents novel tensor-based object trajectory modelling techniques for simultaneous representation of multiple objects motion trajectories in a content based indexing and retrieval framework. Three different tensor decomposition techniques-PARAFAC, HOSVD and multiple-SVD-are explored to achieve this goal with the aim of using a minimum set of coefficients and data-dependant bases. These tensor decompositions have been applied to represent full as well as segmented trajectories. Our simulation results show that the PARAFAC-based representation provides higher compression ratio, superior precision-recall metrics, and smaller query processing time compared to the other tensor-based approaches
基于张量的多目标轨迹索引与检索
本文提出了一种新的基于张量的物体轨迹建模技术,用于在基于内容的索引和检索框架中同时表示多个物体的运动轨迹。为了实现这一目标,研究了三种不同的张量分解技术——parafac、HOSVD和multiple- svd,目的是使用最小的系数集和数据依赖库。这些张量分解已经被应用于表示完整的和分段的轨迹。我们的仿真结果表明,与其他基于张量的方法相比,基于parafac的表示提供了更高的压缩比、更好的查准率指标和更短的查询处理时间
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信