Integration of Vehicle Detection and Distance Estimation using Stereo Vision for Real-Time AEB System

Byeonghak Lim, Taekang Woo, Hakil Kim
{"title":"Integration of Vehicle Detection and Distance Estimation using Stereo Vision for Real-Time AEB System","authors":"Byeonghak Lim, Taekang Woo, Hakil Kim","doi":"10.5220/0006296702110216","DOIUrl":null,"url":null,"abstract":"We propose an integrated system for vehicle detection and distance estimation for real-time autonomous emergency braking (AEB) systems using stereo vision. The two main modules, object detection and distance estimation, share a disparity extraction algorithm in order to satisfy real-time processing requirements. The object detection module consists of an object candidate region generator and a classifier. The object candidate region generator uses stixels extracted from image disparity. A surface normal vector is computed for validation of the candidate regions, which reduces false alarms in the object detection results. In order to classify the proposed stixel regions into foreground and background regions, we use a convolutional neural network (CNN)-based classifier. The distance to an object is estimated from the relationship between the image disparity and camera parameters. After distance estimation, a height constraint is applied with respect to the distance using geometric information. The detection accuracy and distance error rate of the proposed method are evaluated using the KITTI datasets, and the results demonstrate promising performance.","PeriodicalId":218840,"journal":{"name":"International Conference on Vehicle Technology and Intelligent Transport Systems","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Vehicle Technology and Intelligent Transport Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0006296702110216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We propose an integrated system for vehicle detection and distance estimation for real-time autonomous emergency braking (AEB) systems using stereo vision. The two main modules, object detection and distance estimation, share a disparity extraction algorithm in order to satisfy real-time processing requirements. The object detection module consists of an object candidate region generator and a classifier. The object candidate region generator uses stixels extracted from image disparity. A surface normal vector is computed for validation of the candidate regions, which reduces false alarms in the object detection results. In order to classify the proposed stixel regions into foreground and background regions, we use a convolutional neural network (CNN)-based classifier. The distance to an object is estimated from the relationship between the image disparity and camera parameters. After distance estimation, a height constraint is applied with respect to the distance using geometric information. The detection accuracy and distance error rate of the proposed method are evaluated using the KITTI datasets, and the results demonstrate promising performance.
基于立体视觉的实时AEB车辆检测与距离估计集成
我们提出了一种基于立体视觉的实时自动紧急制动(AEB)系统的车辆检测和距离估计集成系统。目标检测和距离估计两个主要模块共用一个视差提取算法,以满足实时处理的要求。目标检测模块由目标候选区域生成器和分类器组成。目标候选区域生成器使用从图像视差中提取的像素。通过计算表面法向量对候选区域进行验证,减少了目标检测结果中的虚警。为了将所提出的像素区域划分为前景和背景区域,我们使用了基于卷积神经网络(CNN)的分类器。从图像视差与相机参数之间的关系估计到目标的距离。距离估计后,利用几何信息对距离施加高度约束。利用KITTI数据集对该方法的检测精度和距离错误率进行了评估,结果表明该方法具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信