An Adept Edge Detection Algorithm for Human Knee Osteoarthritis Images

S. Zahurul, S. Zahidul, R. Jidin
{"title":"An Adept Edge Detection Algorithm for Human Knee Osteoarthritis Images","authors":"S. Zahurul, S. Zahidul, R. Jidin","doi":"10.1109/ICSAP.2010.53","DOIUrl":null,"url":null,"abstract":"Digital image processing comprises varieties of applications, where some of these used in medical image processing include convolution, edge detection as well as contrast enhancement. Efficient edge detection depends on choosing the threshold; the choice of threshold directly determines the results of edge detection. In this paper, Sobel edge detection operator and its enhanced algorithm are first discussed in terms of optimal thresholding in C language under Linux platform. It is implemented a competent execution time for this new enhanced algorithm to detect edges for human knee osteoarthritis images in different critical situations. The proposed method is able to exhibit discernible view of salient features of most osteoarthritis images with approximately 50% better execution time compare to classical Sobel method. Also, it is shown that the algorithm is very effective in case of noisy and blurs images.","PeriodicalId":303366,"journal":{"name":"2010 International Conference on Signal Acquisition and Processing","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Signal Acquisition and Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSAP.2010.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Digital image processing comprises varieties of applications, where some of these used in medical image processing include convolution, edge detection as well as contrast enhancement. Efficient edge detection depends on choosing the threshold; the choice of threshold directly determines the results of edge detection. In this paper, Sobel edge detection operator and its enhanced algorithm are first discussed in terms of optimal thresholding in C language under Linux platform. It is implemented a competent execution time for this new enhanced algorithm to detect edges for human knee osteoarthritis images in different critical situations. The proposed method is able to exhibit discernible view of salient features of most osteoarthritis images with approximately 50% better execution time compare to classical Sobel method. Also, it is shown that the algorithm is very effective in case of noisy and blurs images.
人类膝关节骨关节炎图像的边缘检测算法
数字图像处理包括各种各样的应用,其中一些用于医学图像处理包括卷积,边缘检测以及对比度增强。有效的边缘检测取决于阈值的选择;阈值的选择直接决定了边缘检测的结果。本文首先在Linux平台下用C语言从最优阈值的角度讨论了Sobel边缘检测算子及其增强算法。该算法对不同关键情况下的人体膝关节骨关节炎图像进行边缘检测,实现了合适的执行时间。与经典的Sobel方法相比,所提出的方法能够显示大多数骨关节炎图像的显著特征,执行时间约为50%。实验结果表明,该算法在噪声和模糊图像情况下是非常有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信