Algorithm optimization and architectural design of periodicity transform for biometric applications

Lei Wang
{"title":"Algorithm optimization and architectural design of periodicity transform for biometric applications","authors":"Lei Wang","doi":"10.1109/SIPS.2005.1579934","DOIUrl":null,"url":null,"abstract":"Presented in this paper is a low-complexity iris identification architecture built upon an enhanced periodicity transform., referred to as the prime subspace periodicity transform (PSPT). The proposed PSPT achieves efficient computation by partitioning periodic subspaces into hierarchical prime subspaces. Data decomposition at prime subspaces can be implemented in a simple manner by exploiting the redundancy in correlation computation. The proposed PSPT establishes a theoretical foundation for our work in developing integrated biometric systems for identity authentication. A PSPT-based iris identification architecture is developed that achieves 32.1% - 56.2% reduction in computational complexity. Experimental results demonstrate an efficient solution for reliable and accurate iris identification. The proposed PSPT algorithm in combination with architecture optimizations address the challenges in single-chip implementation of biometric systems.","PeriodicalId":436123,"journal":{"name":"IEEE Workshop on Signal Processing Systems Design and Implementation, 2005.","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Workshop on Signal Processing Systems Design and Implementation, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIPS.2005.1579934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Presented in this paper is a low-complexity iris identification architecture built upon an enhanced periodicity transform., referred to as the prime subspace periodicity transform (PSPT). The proposed PSPT achieves efficient computation by partitioning periodic subspaces into hierarchical prime subspaces. Data decomposition at prime subspaces can be implemented in a simple manner by exploiting the redundancy in correlation computation. The proposed PSPT establishes a theoretical foundation for our work in developing integrated biometric systems for identity authentication. A PSPT-based iris identification architecture is developed that achieves 32.1% - 56.2% reduction in computational complexity. Experimental results demonstrate an efficient solution for reliable and accurate iris identification. The proposed PSPT algorithm in combination with architecture optimizations address the challenges in single-chip implementation of biometric systems.
生物识别应用周期变换的算法优化与体系结构设计
本文提出了一种基于增强周期性变换的低复杂度虹膜识别体系结构。,称为素子空间周期变换(PSPT)。提出的PSPT通过将周期子空间划分为层次素子空间来实现高效的计算。利用相关计算中的冗余性,可以以一种简单的方式实现素子空间上的数据分解。提出的PSPT为我们开发用于身份认证的集成生物识别系统奠定了理论基础。提出了一种基于pspt的虹膜识别体系结构,计算复杂度降低了32.1% ~ 56.2%。实验结果表明,该方法能够实现可靠、准确的虹膜识别。提出的PSPT算法结合架构优化解决了单芯片实现生物识别系统的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信