A performance of modified fuzzy C-means (FCM) and chicken swarm optimization (CSO)

Suprihatin, I. R. Yanto, N. Irsalinda, Tuti Purwaningsih, Haviluddin, A. Wibawa
{"title":"A performance of modified fuzzy C-means (FCM) and chicken swarm optimization (CSO)","authors":"Suprihatin, I. R. Yanto, N. Irsalinda, Tuti Purwaningsih, Haviluddin, A. Wibawa","doi":"10.1109/ICSITECH.2017.8257105","DOIUrl":null,"url":null,"abstract":"Numerous research and related applications of fuzzy clustering are still interesting and important. In this paper, modified Fuzzy C-Means (FCM) and Chicken Swarm Optimization (CSO) algorithm in order to improve local optima of Fuzzy Clustering presented by using UCI dataset. In this study, the proposed FCMCSO performance is also compared with three methods i.e. FCM based on Particle Swarm Optimization (FCMPSO), FCM based on Artificial Bee Colony (FCMABC), and also FCM. The simulation results indicated that the FCMCSO method have better performance than three other compared methods.","PeriodicalId":165045,"journal":{"name":"2017 3rd International Conference on Science in Information Technology (ICSITech)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 3rd International Conference on Science in Information Technology (ICSITech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSITECH.2017.8257105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Numerous research and related applications of fuzzy clustering are still interesting and important. In this paper, modified Fuzzy C-Means (FCM) and Chicken Swarm Optimization (CSO) algorithm in order to improve local optima of Fuzzy Clustering presented by using UCI dataset. In this study, the proposed FCMCSO performance is also compared with three methods i.e. FCM based on Particle Swarm Optimization (FCMPSO), FCM based on Artificial Bee Colony (FCMABC), and also FCM. The simulation results indicated that the FCMCSO method have better performance than three other compared methods.
改进模糊c均值(FCM)和鸡群优化(CSO)的性能
模糊聚类的许多研究和相关应用仍然是有趣和重要的。为了改进基于UCI数据集的模糊聚类算法的局部最优性,本文对模糊c均值(FCM)和鸡群优化(CSO)算法进行了改进。在本研究中,本文提出的FCMCSO性能还与基于粒子群优化的FCM (FCMPSO)、基于人工蜂群的FCM (FCMABC)和基于FCM的FCM进行了比较。仿真结果表明,FCMCSO方法比其他三种方法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信