Identification of Ablation Sites in Persistent Atrial Fibrillation Based on Spatiotemporal Dispersion of Electrograms Using Machine Learning

Amina Ghrissi, F. Squara, J. Montagnat, V. Zarzoso
{"title":"Identification of Ablation Sites in Persistent Atrial Fibrillation Based on Spatiotemporal Dispersion of Electrograms Using Machine Learning","authors":"Amina Ghrissi, F. Squara, J. Montagnat, V. Zarzoso","doi":"10.22489/CinC.2020.221","DOIUrl":null,"url":null,"abstract":"A recent patient-tailored ablation protocol to treat atrial fibrillation consists in identifying ablation sites based on their spatiotemporal dispersion (STD). STD represents a delay of the cardiac activation observed in intracardiac electrograms (EGMs) across contiguous leads. This work aims at automatically identifying ablation sites by classifying EGM data acquired by the PentaRay catheter into ablated vs. non-ablated groups using machine learning. More than 35000 multichannel recordings are acquired from 15 persistent AF patients. An annotation model is designed to label the dataset. The classifiers include: (1) multivariate logistic regression; (2) LeNet-STD, a shallow convolutional neural network. A binary label identifying whether the mapped site contains STD pattern according to the interventional cardiologist is combined to raw EGMs as classifiers input. The LeNet-STD combined with data augmentation yields the best performance with an F1-score of 76%.","PeriodicalId":407282,"journal":{"name":"2020 Computing in Cardiology","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Computing in Cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2020.221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A recent patient-tailored ablation protocol to treat atrial fibrillation consists in identifying ablation sites based on their spatiotemporal dispersion (STD). STD represents a delay of the cardiac activation observed in intracardiac electrograms (EGMs) across contiguous leads. This work aims at automatically identifying ablation sites by classifying EGM data acquired by the PentaRay catheter into ablated vs. non-ablated groups using machine learning. More than 35000 multichannel recordings are acquired from 15 persistent AF patients. An annotation model is designed to label the dataset. The classifiers include: (1) multivariate logistic regression; (2) LeNet-STD, a shallow convolutional neural network. A binary label identifying whether the mapped site contains STD pattern according to the interventional cardiologist is combined to raw EGMs as classifiers input. The LeNet-STD combined with data augmentation yields the best performance with an F1-score of 76%.
基于电图时空弥散的持续性心房颤动消融部位的机器学习识别
最近一项针对患者的治疗心房颤动的消融方案包括根据其时空弥散(STD)确定消融部位。STD表示心内电图(EGMs)通过连续导联观察到的心脏激活延迟。这项工作旨在通过使用机器学习将PentaRay导管获得的EGM数据分类为消融组和非消融组,从而自动识别消融部位。从15例持续性房颤患者中获得35000多道录音。设计了一个标注模型来标记数据集。分类器包括:(1)多元逻辑回归;(2) LeNet-STD,浅卷积神经网络。根据介入心脏病专家的意见,一个二元标签识别所映射的部位是否包含STD模式,并结合原始egm作为分类器的输入。LeNet-STD与数据增强相结合,可获得最佳性能,f1得分为76%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信