Building a Chinese Slang Sentiment Lexicon Using Online Crowdsourcing Dictionaries

Binjun Jiang
{"title":"Building a Chinese Slang Sentiment Lexicon Using Online Crowdsourcing Dictionaries","authors":"Binjun Jiang","doi":"10.1109/CONF-SPML54095.2021.00026","DOIUrl":null,"url":null,"abstract":"Microblogging platforms are now one of the most popular means of social media in China. Carrying sentiment analysis on those platforms can provide valuable insights for various uses. However, the heavy use of Internet slang in microblog contexts and the lack of slang vocabulary in sentiment lexicons make it problematic. Aimed at this issue, we propose a method to build a comprehensive sentiment lexicon for Chinese internet slang. We leverage online sources to acquire a list of slang words first. Then, a method based on SO-PMI (Semantic Orientation from Pointwise Mutual Information) is used to assign the sentiment polarity to each word. By Utilizing online sources, the slang lexicon has comprehensive coverage of internet slang. The sentiment categorization method based on SO-PMI guarantees the sentiment polarity we acquire from microblog flatforms is compatible with the same microblog context the lexicon aimed to analyze.","PeriodicalId":415094,"journal":{"name":"2021 International Conference on Signal Processing and Machine Learning (CONF-SPML)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Signal Processing and Machine Learning (CONF-SPML)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONF-SPML54095.2021.00026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Microblogging platforms are now one of the most popular means of social media in China. Carrying sentiment analysis on those platforms can provide valuable insights for various uses. However, the heavy use of Internet slang in microblog contexts and the lack of slang vocabulary in sentiment lexicons make it problematic. Aimed at this issue, we propose a method to build a comprehensive sentiment lexicon for Chinese internet slang. We leverage online sources to acquire a list of slang words first. Then, a method based on SO-PMI (Semantic Orientation from Pointwise Mutual Information) is used to assign the sentiment polarity to each word. By Utilizing online sources, the slang lexicon has comprehensive coverage of internet slang. The sentiment categorization method based on SO-PMI guarantees the sentiment polarity we acquire from microblog flatforms is compatible with the same microblog context the lexicon aimed to analyze.
利用网络众包词典构建汉语俚语情感词典
微博平台现在是中国最受欢迎的社交媒体之一。在这些平台上进行情绪分析可以为各种用途提供有价值的见解。然而,微博语境中网络俚语的大量使用和情感词汇中俚语词汇的缺乏使其存在问题。针对这一问题,我们提出了一种构建汉语网络俚语综合情感词典的方法。我们首先利用在线资源获取俚语单词列表。然后,采用基于点间互信息语义取向(SO-PMI)的方法为每个词分配情感极性。俚语词典通过利用网络资源,对网络俚语进行了全面的覆盖。基于SO-PMI的情感分类方法保证了我们从微博平台获取的情感极性与词典要分析的同一微博上下文是兼容的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信