Prediction of Environmental Pollution Using Hybrid PSO-K-Means Approach

M. Mahajan, Santosh Kumar, B. Pant
{"title":"Prediction of Environmental Pollution Using Hybrid PSO-K-Means Approach","authors":"M. Mahajan, Santosh Kumar, B. Pant","doi":"10.4018/ijehmc.2021030104","DOIUrl":null,"url":null,"abstract":"Air pollution is increasing day by day, decreasing the world economy, degrading the quality of life, and resulting in a major productivity loss. At present, this is one of the most critical problems. It has a significant impact on human health and ecosystem. Reliable air quality prediction can reduce the impact it has on the nearby population and ecosystem; hence, improving air quality prediction is the prime objective for the society. The air quality data collected from sensors usually contains deviant values called outliers which have a significant detrimental effect on the quality of prediction and need to be detected and eliminated prior to decision making. The effectiveness of the outlier detection method and the clustering methods in turn depends on the effective and efficient choice of parameters like initial centroids and number of clusters, etc. The authors have explored the hybrid approach combining k-means clustering optimized with particle swarm optimization (PSO) to optimize the cluster formation, thereby improving the efficiency of the prediction of the environmental pollution.","PeriodicalId":375617,"journal":{"name":"Int. J. E Health Medical Commun.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. E Health Medical Commun.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijehmc.2021030104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Air pollution is increasing day by day, decreasing the world economy, degrading the quality of life, and resulting in a major productivity loss. At present, this is one of the most critical problems. It has a significant impact on human health and ecosystem. Reliable air quality prediction can reduce the impact it has on the nearby population and ecosystem; hence, improving air quality prediction is the prime objective for the society. The air quality data collected from sensors usually contains deviant values called outliers which have a significant detrimental effect on the quality of prediction and need to be detected and eliminated prior to decision making. The effectiveness of the outlier detection method and the clustering methods in turn depends on the effective and efficient choice of parameters like initial centroids and number of clusters, etc. The authors have explored the hybrid approach combining k-means clustering optimized with particle swarm optimization (PSO) to optimize the cluster formation, thereby improving the efficiency of the prediction of the environmental pollution.
混合pso - k -均值法预测环境污染
空气污染日益严重,减少了世界经济,降低了生活质量,并造成了重大的生产力损失。这是目前最关键的问题之一。它对人类健康和生态系统有重大影响。可靠的空气质量预测可以减少对附近人口和生态系统的影响;因此,改善空气质量预测是社会的首要目标。从传感器收集的空气质量数据通常包含被称为异常值的偏差值,这些异常值对预测质量有重大不利影响,需要在决策之前进行检测和消除。离群点检测方法和聚类方法的有效性反过来取决于初始质心和聚类数量等参数的有效和高效选择。探索了k均值聚类优化与粒子群优化(PSO)相结合的混合方法来优化聚类的形成,从而提高环境污染预测的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信