Blind copy move image forgery detection using dyadic undecimated wavelet transform

G. Muhammad, M. Hussain, Khalid Khawaji, G. Bebis
{"title":"Blind copy move image forgery detection using dyadic undecimated wavelet transform","authors":"G. Muhammad, M. Hussain, Khalid Khawaji, G. Bebis","doi":"10.1109/ICDSP.2011.6004974","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a blind copy move image forgery detection method using dyadic wavelet transform (DyWT). DyWT is shift invariant and therefore more suitable than discrete wavelet transform (DWT) for data analysis. First we decompose the input image into approximation (LL1) and detail (HH1) subbands. Then we divide LL1 and HH1 subbands into overlapping blocks and measure the similarity between blocks. The key idea is that the similarity between the copied and moved blocks from the LL1 subband should be high, while the one from the HH1 subband should be low due to noise inconsistency in the moved block. We sort pairs of blocks based on high similarity using the LL1 subband and high dissimilarity using the HH1 subband. Using thresholding, we obtain matched pairs from the sorted list as copied and moved blocks. Experimental results show the effectiveness of the proposed method over competitive methods using DWT and the LL1 or HH1 subbands only.","PeriodicalId":360702,"journal":{"name":"2011 17th International Conference on Digital Signal Processing (DSP)","volume":"1053 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 17th International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2011.6004974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56

Abstract

In this paper, we propose a blind copy move image forgery detection method using dyadic wavelet transform (DyWT). DyWT is shift invariant and therefore more suitable than discrete wavelet transform (DWT) for data analysis. First we decompose the input image into approximation (LL1) and detail (HH1) subbands. Then we divide LL1 and HH1 subbands into overlapping blocks and measure the similarity between blocks. The key idea is that the similarity between the copied and moved blocks from the LL1 subband should be high, while the one from the HH1 subband should be low due to noise inconsistency in the moved block. We sort pairs of blocks based on high similarity using the LL1 subband and high dissimilarity using the HH1 subband. Using thresholding, we obtain matched pairs from the sorted list as copied and moved blocks. Experimental results show the effectiveness of the proposed method over competitive methods using DWT and the LL1 or HH1 subbands only.
基于二进非消差小波变换的盲复制运动图像伪造检测
本文提出了一种基于二进小波变换(DyWT)的盲复制运动图像伪造检测方法。DyWT是平移不变的,因此比离散小波变换(DWT)更适合于数据分析。首先,我们将输入图像分解为近似(LL1)和细节(HH1)子带。然后将LL1和h1子带划分为重叠块,并测量块之间的相似性。关键思想是,来自LL1子带的复制和移动块之间的相似性应该很高,而来自HH1子带的相似性应该很低,因为移动块中的噪声不一致。我们使用LL1子带对基于高相似性的块进行排序,使用h1子带对基于高不相似性的块进行排序。使用阈值,我们从排序列表中获得匹配的对,作为复制和移动的块。实验结果表明,该方法比仅使用DWT和LL1或HH1子带的竞争方法更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信