Document Transformation for Multi-label Feature Selection in Text Categorization

Weizhu Chen, Jun Yan, Benyu Zhang, Zheng Chen, Qiang Yang
{"title":"Document Transformation for Multi-label Feature Selection in Text Categorization","authors":"Weizhu Chen, Jun Yan, Benyu Zhang, Zheng Chen, Qiang Yang","doi":"10.1109/ICDM.2007.18","DOIUrl":null,"url":null,"abstract":"Feature selection on multi-label documents for automatic text categorization is an under-explored research area. This paper presents a systematic document transformation framework, whereby the multi-label documents are transformed into single-label documents before applying standard feature selection algorithms, to solve the multi-label feature selection problem. Under this framework, we undertake a comparative study on four intuitive document transformation approaches and propose a novel approach called entropy-based label assignment (ELA), which assigns the labels weights to a multi-label document based on label entropy. Three standard feature selection algorithms are utilized for evaluating the document transformation approaches in order to verify its impact on multi-class text categorization problems. Using a SVM classifier and two multi-label evaluation benchmark text collections, we show that the choice of document transformation approaches can significantly influence the performance of multi-class categorization and that our proposed document transformation approach ELA can achieve better performance than all other approaches.","PeriodicalId":233758,"journal":{"name":"Seventh IEEE International Conference on Data Mining (ICDM 2007)","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"127","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh IEEE International Conference on Data Mining (ICDM 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2007.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 127

Abstract

Feature selection on multi-label documents for automatic text categorization is an under-explored research area. This paper presents a systematic document transformation framework, whereby the multi-label documents are transformed into single-label documents before applying standard feature selection algorithms, to solve the multi-label feature selection problem. Under this framework, we undertake a comparative study on four intuitive document transformation approaches and propose a novel approach called entropy-based label assignment (ELA), which assigns the labels weights to a multi-label document based on label entropy. Three standard feature selection algorithms are utilized for evaluating the document transformation approaches in order to verify its impact on multi-class text categorization problems. Using a SVM classifier and two multi-label evaluation benchmark text collections, we show that the choice of document transformation approaches can significantly influence the performance of multi-class categorization and that our proposed document transformation approach ELA can achieve better performance than all other approaches.
文本分类中多标签特征选择的文档转换
多标签文本自动分类的特征选择是一个尚未开发的研究领域。本文提出了一个系统的文档转换框架,将多标签文档转换为单标签文档,然后应用标准的特征选择算法,解决多标签特征选择问题。在此框架下,我们对四种直观的文档转换方法进行了比较研究,并提出了一种基于熵的标签分配方法(ELA),该方法基于标签熵为多标签文档分配标签权重。利用三种标准的特征选择算法来评估文档转换方法,以验证其对多类文本分类问题的影响。使用SVM分类器和两个多标签评估基准文本集,我们表明文档转换方法的选择可以显著影响多类分类的性能,并且我们提出的文档转换方法ELA比所有其他方法都能获得更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信