Converse extensionality and apartness

B. V. D. Berg, Robert Passmann
{"title":"Converse extensionality and apartness","authors":"B. V. D. Berg, Robert Passmann","doi":"10.46298/lmcs-18(4:13)2022","DOIUrl":null,"url":null,"abstract":"In this paper we try to find a computational interpretation for a strong form\nof extensionality, which we call \"converse extensionality\". Converse\nextensionality principles, which arise as the Dialectica interpretation of the\naxiom of extensionality, were first studied by Howard. In order to give a\ncomputational interpretation to these principles, we reconsider Brouwer's\napartness relation, a strong constructive form of inequality. Formally, we\nprovide a categorical construction to endow every typed combinatory algebra\nwith an apartness relation. We then exploit that functions reflect apartness,\nin addition to preserving equality, to prove that the resulting categories of\nassemblies model a converse extensionality principle.","PeriodicalId":314387,"journal":{"name":"Log. Methods Comput. Sci.","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Log. Methods Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/lmcs-18(4:13)2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we try to find a computational interpretation for a strong form of extensionality, which we call "converse extensionality". Converse extensionality principles, which arise as the Dialectica interpretation of the axiom of extensionality, were first studied by Howard. In order to give a computational interpretation to these principles, we reconsider Brouwer's apartness relation, a strong constructive form of inequality. Formally, we provide a categorical construction to endow every typed combinatory algebra with an apartness relation. We then exploit that functions reflect apartness, in addition to preserving equality, to prove that the resulting categories of assemblies model a converse extensionality principle.
反向延展性和分离性
在本文中,我们试图找到一种强形式的可拓性的计算解释,我们称之为“逆可拓性”。逆外延性原则是霍华德对外延性公理的辩证法解释。为了给这些原理一个计算的解释,我们重新考虑布劳威尔的分离关系,一个强构造形式的不等式。在形式上,我们提供了一个范畴构造,赋予每一个类型化组合代数一个分离关系。然后,我们利用函数反映分离性,除了保持相等之外,证明了所得到的集合的类别模型是一个反向延展性原则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信