{"title":"A Proof System with Names for Modal Mu-calculus","authors":"C. Stirling","doi":"10.4204/EPTCS.129.2","DOIUrl":null,"url":null,"abstract":"Fixpoints are an important ingredient in semantics, abstract interpretation and program logics. Their addition to a logic can add considerable expressive power. One general issue is how to define proof systems for such logics. Here we examine proof systems for modal logic with fixpoints. We present a tableau proof system for checking validity of formulas which uses names to keep track of unfoldings of fixpoint variables as devised by Jungteerapanich.","PeriodicalId":411813,"journal":{"name":"Festschrift for Dave Schmidt","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Festschrift for Dave Schmidt","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.129.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Fixpoints are an important ingredient in semantics, abstract interpretation and program logics. Their addition to a logic can add considerable expressive power. One general issue is how to define proof systems for such logics. Here we examine proof systems for modal logic with fixpoints. We present a tableau proof system for checking validity of formulas which uses names to keep track of unfoldings of fixpoint variables as devised by Jungteerapanich.