{"title":"Mean-variance Based Risk-sensitive Reinforcement Learning with Interpretable Attention","authors":"Woo Kyung Kim, Youngseok Lee, Hong-Suh Woo","doi":"10.1145/3523111.3523127","DOIUrl":null,"url":null,"abstract":"Risk-sensitive reinforcement learning (RL) has been studied to address the risk and uncertainty in autonomous systems. While a comprehensive understanding for the behaviors of RL agents plays an important role, interpretability was rarely discussed in the context of risk-sensitivity RL. In this paper, we present an interpretable visualization scheme with attention mechanism in which a saliency map represents the relative influence degree of an input state on the decision-making of mean-variance based risk-sensitive RL. Through 2D navigation experiments, we demonstrate that our scheme provides the interpretability with regard to risk-sensitive levels.","PeriodicalId":185161,"journal":{"name":"Proceedings of the 2022 5th International Conference on Machine Vision and Applications","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 5th International Conference on Machine Vision and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3523111.3523127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Risk-sensitive reinforcement learning (RL) has been studied to address the risk and uncertainty in autonomous systems. While a comprehensive understanding for the behaviors of RL agents plays an important role, interpretability was rarely discussed in the context of risk-sensitivity RL. In this paper, we present an interpretable visualization scheme with attention mechanism in which a saliency map represents the relative influence degree of an input state on the decision-making of mean-variance based risk-sensitive RL. Through 2D navigation experiments, we demonstrate that our scheme provides the interpretability with regard to risk-sensitive levels.