Control of the nonlinear polarisation dynamics in a semiconductor waveguide with a periodic magnetic field

D. Hutchings, J. Arnold
{"title":"Control of the nonlinear polarisation dynamics in a semiconductor waveguide with a periodic magnetic field","authors":"D. Hutchings, J. Arnold","doi":"10.1109/IQEC.2000.908018","DOIUrl":null,"url":null,"abstract":"Nonlinear polarisation dynamics in semiconductor waveguides is a topic of current interest with applications in vectorial spatial solitons and all-optical switching schemes. It is generally found that as the change in refractive index induced by the Kerr nonlinearity becomes comparable to the birefringence of the waveguide, the single-polarised (TE and TM) stable stationary eigenmode becomes unstable and there is an emergence of a pair of mixed-polarised stable stationary eigenmodes (i.e. bifurcation). The bifurcation in the mode with the lower propagation constant is attributable to the anisotropy in the nonlinear refraction between the TE and TM polarisations. These phenomena have been scrutinised both in the plane-wave and spatial soliton cases obtaining analytic results for the bifurcation threshold. Of interest is the additional degree of control obtained with a longitudinal magnetic field through the magneto-optic effect which may, for example, allow the polarisation state to be switched from one stationary state to another. The polarisation dynamics are analysed in terms of the Stokes parameters allowing the evolution trajectories to be mapped on a Poincare sphere for the non-dissipative case. We derive the Hamiltonian for the system consisting of terms for the anisotropic Kerr nonlinearity, waveguide birefringence and longitudinal magneto-optic effect. From the Hamiltonian the evolution equations in terms of the Stokes parameters can be subsequently obtained.","PeriodicalId":267372,"journal":{"name":"Conference Digest. 2000 International Quantum Electronics Conference (Cat. No.00TH8504)","volume":"428 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Digest. 2000 International Quantum Electronics Conference (Cat. No.00TH8504)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IQEC.2000.908018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nonlinear polarisation dynamics in semiconductor waveguides is a topic of current interest with applications in vectorial spatial solitons and all-optical switching schemes. It is generally found that as the change in refractive index induced by the Kerr nonlinearity becomes comparable to the birefringence of the waveguide, the single-polarised (TE and TM) stable stationary eigenmode becomes unstable and there is an emergence of a pair of mixed-polarised stable stationary eigenmodes (i.e. bifurcation). The bifurcation in the mode with the lower propagation constant is attributable to the anisotropy in the nonlinear refraction between the TE and TM polarisations. These phenomena have been scrutinised both in the plane-wave and spatial soliton cases obtaining analytic results for the bifurcation threshold. Of interest is the additional degree of control obtained with a longitudinal magnetic field through the magneto-optic effect which may, for example, allow the polarisation state to be switched from one stationary state to another. The polarisation dynamics are analysed in terms of the Stokes parameters allowing the evolution trajectories to be mapped on a Poincare sphere for the non-dissipative case. We derive the Hamiltonian for the system consisting of terms for the anisotropic Kerr nonlinearity, waveguide birefringence and longitudinal magneto-optic effect. From the Hamiltonian the evolution equations in terms of the Stokes parameters can be subsequently obtained.
周期磁场下半导体波导非线性极化动力学的控制
半导体波导中的非线性极化动力学是目前在矢量空间孤子和全光开关方案中的应用。一般发现,当克尔非线性引起的折射率变化变得与波导的双折射相当时,单极化(TE和TM)稳定平稳本征模变得不稳定,出现一对混合极化稳定平稳本征模(即分岔)。低传播常数模式的分岔是由TE偏振和TM偏振非线性折射的各向异性引起的。这些现象在平面波和空间孤子的情况下都得到了分岔阈值的解析结果。令人感兴趣的是通过磁光效应获得的纵向磁场的额外控制程度,例如,它可以允许极化状态从一个定态切换到另一个定态。根据Stokes参数分析了极化动力学,允许在非耗散情况下将演化轨迹映射到庞加莱球上。我们导出了由各向异性克尔非线性、波导双折射和纵向磁光效应项组成的系统的哈密顿量。由哈密顿量可以得到以Stokes参数表示的演化方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信