MaRDIFlow: A Workflow Framework for Documentation and Integration of FAIR Computational Experiments

Pavan L. Veluvali, J. Heiland, Peter Benner
{"title":"MaRDIFlow: A Workflow Framework for Documentation and Integration of FAIR Computational Experiments","authors":"Pavan L. Veluvali, J. Heiland, Peter Benner","doi":"10.52825/cordi.v1i.323","DOIUrl":null,"url":null,"abstract":"Numerical algorithms and computational tools are essential for managing and analyzing complex data processing tasks. With ever increasing availability of meta-data and parameter-driven simulations, the demand and the need for reliable and automated workflow frameworks to reproduce computational experiments has grown.  In this work, we aim to develop a novel computational workflow framework, namely MaRDIFlow, that describes the abstraction of multi-layered workflow components. Herein, we plan to enable and implement scientific computing data FAIRness into actionable guidelines for FAIR computational experiments.","PeriodicalId":359879,"journal":{"name":"Proceedings of the Conference on Research Data Infrastructure","volume":"418 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Conference on Research Data Infrastructure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52825/cordi.v1i.323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Numerical algorithms and computational tools are essential for managing and analyzing complex data processing tasks. With ever increasing availability of meta-data and parameter-driven simulations, the demand and the need for reliable and automated workflow frameworks to reproduce computational experiments has grown.  In this work, we aim to develop a novel computational workflow framework, namely MaRDIFlow, that describes the abstraction of multi-layered workflow components. Herein, we plan to enable and implement scientific computing data FAIRness into actionable guidelines for FAIR computational experiments.
MaRDIFlow: FAIR计算实验文档化和集成的工作流框架
数值算法和计算工具对于管理和分析复杂的数据处理任务至关重要。随着元数据和参数驱动模拟的可用性不断增加,对可靠和自动化工作流框架的需求和需求不断增长,以重现计算实验。在这项工作中,我们的目标是开发一种新的计算工作流框架,即MaRDIFlow,它描述了多层工作流组件的抽象。在此,我们计划使科学计算数据的公平性成为公平计算实验的可操作指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信