QAS: Real-Time Quadratic Approximation of Subdivision Surfaces

T. Boubekeur, C. Schlick
{"title":"QAS: Real-Time Quadratic Approximation of Subdivision Surfaces","authors":"T. Boubekeur, C. Schlick","doi":"10.1109/PG.2007.20","DOIUrl":null,"url":null,"abstract":"We introduce QAS, an efficient quadratic approximation of subdivision surfaces which offers a very close appearance compared to the true subdivision surface but avoids recursion, providing at least one order of magnitude faster rendering. QAS uses enriched polygons, equipped with edge vertices, and replaces them on-the-fly with low degree polynomials for interpolating positions and normals. By systematically projecting the vertices of the input coarse mesh at their limit position on the subdivision surface, the visual quality of the approximation is good enough for imposing only a single subdivision step, followed by our patch fitting, which allows real-time performances for million polygons output. Additionally, the parametric nature of the approximation offers an efficient adaptive sampling for rendering and displacement mapping. Last, the hexagonal support associated to each coarse triangle is adapted to geometry processors.","PeriodicalId":376934,"journal":{"name":"15th Pacific Conference on Computer Graphics and Applications (PG'07)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"15th Pacific Conference on Computer Graphics and Applications (PG'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PG.2007.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

We introduce QAS, an efficient quadratic approximation of subdivision surfaces which offers a very close appearance compared to the true subdivision surface but avoids recursion, providing at least one order of magnitude faster rendering. QAS uses enriched polygons, equipped with edge vertices, and replaces them on-the-fly with low degree polynomials for interpolating positions and normals. By systematically projecting the vertices of the input coarse mesh at their limit position on the subdivision surface, the visual quality of the approximation is good enough for imposing only a single subdivision step, followed by our patch fitting, which allows real-time performances for million polygons output. Additionally, the parametric nature of the approximation offers an efficient adaptive sampling for rendering and displacement mapping. Last, the hexagonal support associated to each coarse triangle is adapted to geometry processors.
细分曲面的实时二次逼近
我们引入了QAS,这是一种高效的二次近似细分曲面,与真正的细分曲面相比,它提供了非常接近的外观,但避免了递归,提供了至少一个数量级的渲染速度。QAS使用丰富的多边形,配备边缘顶点,并用低次多项式替换它们,用于插值位置和法线。通过系统地将输入粗网格的顶点投影到细分表面的极限位置,近似的视觉质量足以只施加一个细分步骤,然后是我们的补丁拟合,这允许数百万个多边形输出的实时性能。此外,近似的参数特性为渲染和位移映射提供了有效的自适应采样。最后,将与每个粗三角形相关联的六边形支持适应于几何处理器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信