Exploring Layer Trajectory LSTM with Depth Processing Units and Attention

Jinyu Li, Liang Lu, Changliang Liu, Y. Gong
{"title":"Exploring Layer Trajectory LSTM with Depth Processing Units and Attention","authors":"Jinyu Li, Liang Lu, Changliang Liu, Y. Gong","doi":"10.1109/SLT.2018.8639637","DOIUrl":null,"url":null,"abstract":"Traditional LSTM model and its variants normally work in a frame-by-frame and layer-by-layer fashion, which deals with the temporal modeling and target classification problems at the same time. In this paper, we extend our recently proposed layer trajectory LSTM (ltLSTM) and present a generalized framework, which is equipped with a depth processing block that scans the hidden states of each time-LSTM layer, and uses the summarized layer trajectory information for final senone classification. We explore different modeling units used in the depth processing block to have a good tradeoff between accuracy and runtime cost. Furthermore, we integrate an attention module into this framework to explore wide context information, which is especially beneficial for uni-directional LSTMs. Trained with 30 thousand hours of EN-US Microsoft internal data and cross entropy criterion, the proposed generalized ltLSTM performed significantly better than the standard multi-layer time-LSTM, with up to 12.8% relative word error rate (WER) reduction across different tasks. With attention modeling, the relative WER reduction can be up to 17.9%. We observed similar gain when the models were trained with sequence discriminative training criterion.","PeriodicalId":377307,"journal":{"name":"2018 IEEE Spoken Language Technology Workshop (SLT)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2018.8639637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Traditional LSTM model and its variants normally work in a frame-by-frame and layer-by-layer fashion, which deals with the temporal modeling and target classification problems at the same time. In this paper, we extend our recently proposed layer trajectory LSTM (ltLSTM) and present a generalized framework, which is equipped with a depth processing block that scans the hidden states of each time-LSTM layer, and uses the summarized layer trajectory information for final senone classification. We explore different modeling units used in the depth processing block to have a good tradeoff between accuracy and runtime cost. Furthermore, we integrate an attention module into this framework to explore wide context information, which is especially beneficial for uni-directional LSTMs. Trained with 30 thousand hours of EN-US Microsoft internal data and cross entropy criterion, the proposed generalized ltLSTM performed significantly better than the standard multi-layer time-LSTM, with up to 12.8% relative word error rate (WER) reduction across different tasks. With attention modeling, the relative WER reduction can be up to 17.9%. We observed similar gain when the models were trained with sequence discriminative training criterion.
利用深度处理单元和注意力探索层轨迹LSTM
传统的LSTM模型及其变体通常采用逐帧逐层的工作方式,同时处理时间建模和目标分类问题。在本文中,我们扩展了我们最近提出的层轨迹LSTM (ltLSTM),并提出了一个广义框架,该框架配备了深度处理块,扫描每个时间LSTM层的隐藏状态,并使用总结的层轨迹信息进行最终的传感器分类。我们探索了深度处理块中使用的不同建模单元,以在精度和运行时间成本之间取得良好的权衡。此外,我们将注意力模块集成到该框架中以探索广泛的上下文信息,这对单向lstm特别有益。经过3万小时的EN-US Microsoft内部数据和交叉熵准则的训练,所提出的广义ltLSTM的表现明显优于标准多层时间- lstm,在不同任务之间的相对单词错误率(WER)降低了12.8%。通过注意建模,相对WER降低可达17.9%。用序列判别训练准则对模型进行训练时,我们观察到相似的增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信