Ambiguity and Generality in Natural Language Privacy Policies

M. Hosseini, John Heaps, Rocky Slavin, Jianwei Niu, T. Breaux
{"title":"Ambiguity and Generality in Natural Language Privacy Policies","authors":"M. Hosseini, John Heaps, Rocky Slavin, Jianwei Niu, T. Breaux","doi":"10.1109/RE51729.2021.00014","DOIUrl":null,"url":null,"abstract":"Privacy policies are legal documents containing application data practices. These documents are well-established sources of requirements in software engineering. However, privacy policies are written in natural language, thus subject to ambiguity and abstraction. Eliciting requirements from privacy policies is a challenging task as these ambiguities can result in more than one interpretation of a given information type (e.g., ambiguous information type \"device information\" in the statement \"we collect your device information\"). To address this challenge, we propose an automated approach to infer semantic relations among information types and construct an ontology to guide requirements authors in the selection of the most appropriate information type terms. Our solution utilizes word embeddings and Convolutional Neural Networks (CNN) to classify information type pairs as either hypernymy, synonymy, or unknown. We evaluate our model on a manually-built ontology, yielding predictions that identify hypernymy relations in information type pairs with 0.904 F-1 score, suggesting a large reduction in effort required for ontology construction.","PeriodicalId":440285,"journal":{"name":"2021 IEEE 29th International Requirements Engineering Conference (RE)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 29th International Requirements Engineering Conference (RE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RE51729.2021.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Privacy policies are legal documents containing application data practices. These documents are well-established sources of requirements in software engineering. However, privacy policies are written in natural language, thus subject to ambiguity and abstraction. Eliciting requirements from privacy policies is a challenging task as these ambiguities can result in more than one interpretation of a given information type (e.g., ambiguous information type "device information" in the statement "we collect your device information"). To address this challenge, we propose an automated approach to infer semantic relations among information types and construct an ontology to guide requirements authors in the selection of the most appropriate information type terms. Our solution utilizes word embeddings and Convolutional Neural Networks (CNN) to classify information type pairs as either hypernymy, synonymy, or unknown. We evaluate our model on a manually-built ontology, yielding predictions that identify hypernymy relations in information type pairs with 0.904 F-1 score, suggesting a large reduction in effort required for ontology construction.
自然语言隐私政策中的歧义与一般性
隐私政策是包含应用程序数据实践的法律文件。这些文档是软件工程中公认的需求来源。然而,隐私政策是用自然语言编写的,因此容易产生歧义和抽象。从隐私政策中引出要求是一项具有挑战性的任务,因为这些模糊性可能导致对给定信息类型的多种解释(例如,“我们收集您的设备信息”声明中的模糊信息类型“设备信息”)。为了应对这一挑战,我们提出了一种自动化的方法来推断信息类型之间的语义关系,并构建一个本体来指导需求作者选择最合适的信息类型术语。我们的解决方案利用词嵌入和卷积神经网络(CNN)将信息类型对分类为同义词、同义词或未知。我们在一个人工构建的本体上评估了我们的模型,得出了识别信息类型对中的超义关系的预测,得分为0.904 F-1,这表明本体构建所需的工作量大大减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信