Invariant Information Learning for Image Recognition

Yufeng Chen, Bo Zhang, Xuying Zhao, Zhixuan Li
{"title":"Invariant Information Learning for Image Recognition","authors":"Yufeng Chen, Bo Zhang, Xuying Zhao, Zhixuan Li","doi":"10.1109/ICVRV.2017.00015","DOIUrl":null,"url":null,"abstract":"Neural network is difficult to understand the invariance of input data, which is one of the causes of weak neural network generalization. So the researchers usually carry out data augmentation method on the training set, which makes the neural network remember different deformation patterns. We propose an invariant information learning framework:original CNN+Spatial information Function Zone(SFZ). This framework uses correlation matrix method instead of data augmentation method to make the neural network have the ability to learn the invariance of input data. Finally, our experiment shows that CNN+SFZ can effectively help improve generalization ability without data augmentation. In the absence of data augmentation for the training set, the network with SFZ reduced the error rate by 9.01% over the original network.","PeriodicalId":187934,"journal":{"name":"2017 International Conference on Virtual Reality and Visualization (ICVRV)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Virtual Reality and Visualization (ICVRV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVRV.2017.00015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Neural network is difficult to understand the invariance of input data, which is one of the causes of weak neural network generalization. So the researchers usually carry out data augmentation method on the training set, which makes the neural network remember different deformation patterns. We propose an invariant information learning framework:original CNN+Spatial information Function Zone(SFZ). This framework uses correlation matrix method instead of data augmentation method to make the neural network have the ability to learn the invariance of input data. Finally, our experiment shows that CNN+SFZ can effectively help improve generalization ability without data augmentation. In the absence of data augmentation for the training set, the network with SFZ reduced the error rate by 9.01% over the original network.
图像识别的不变信息学习
神经网络难以理解输入数据的不变性,这是神经网络泛化能力弱的原因之一。因此研究人员通常对训练集进行数据增强,使神经网络记住不同的变形模式。我们提出了一个不变的信息学习框架:原始CNN+空间信息功能区(SFZ)。该框架采用相关矩阵法代替数据增强法,使神经网络具有学习输入数据不变性的能力。最后,我们的实验表明,CNN+SFZ可以有效地帮助提高泛化能力,而无需数据增强。在没有对训练集进行数据增强的情况下,使用SFZ的网络比原始网络的错误率降低了9.01%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信